Pablo Navarro Moreno, Aneta Wojnar and Felipe J. Llanes-Estrada
{"title":"Testing gravity with the latent heat of neutron star matter","authors":"Pablo Navarro Moreno, Aneta Wojnar and Felipe J. Llanes-Estrada","doi":"10.1088/1475-7516/2025/01/015","DOIUrl":null,"url":null,"abstract":"The Seidov limit is a bound on the maximum latent heat that a presumed first-order phase transition of neutron-star matter can have before its excess energy density, not compensated by additional pressure, results in gravitational collapse. Because latent heat forces an apparent nonanalytic behaviour in plots correlating physical quantities (kinks in two-dimensional, ridges in three-dimensional ones), it can be constrained by data. As the onset of collapse depends on the intensity of gravity, testing for sudden derivative changes and, if they are large, breaching the Seidov limit would reward with two successive discoveries: such a phase transition (which could stem from hadron matter but also from a gravitational phase transition), and a modification of General Relativity (thus breaking the matter/gravity degeneracy). We illustrate the point with f(R) = R + αR2 metric gravity.","PeriodicalId":15445,"journal":{"name":"Journal of Cosmology and Astroparticle Physics","volume":"22 1","pages":""},"PeriodicalIF":5.3000,"publicationDate":"2025-01-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Cosmology and Astroparticle Physics","FirstCategoryId":"101","ListUrlMain":"https://doi.org/10.1088/1475-7516/2025/01/015","RegionNum":2,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ASTRONOMY & ASTROPHYSICS","Score":null,"Total":0}
引用次数: 0
Abstract
The Seidov limit is a bound on the maximum latent heat that a presumed first-order phase transition of neutron-star matter can have before its excess energy density, not compensated by additional pressure, results in gravitational collapse. Because latent heat forces an apparent nonanalytic behaviour in plots correlating physical quantities (kinks in two-dimensional, ridges in three-dimensional ones), it can be constrained by data. As the onset of collapse depends on the intensity of gravity, testing for sudden derivative changes and, if they are large, breaching the Seidov limit would reward with two successive discoveries: such a phase transition (which could stem from hadron matter but also from a gravitational phase transition), and a modification of General Relativity (thus breaking the matter/gravity degeneracy). We illustrate the point with f(R) = R + αR2 metric gravity.
期刊介绍:
Journal of Cosmology and Astroparticle Physics (JCAP) encompasses theoretical, observational and experimental areas as well as computation and simulation. The journal covers the latest developments in the theory of all fundamental interactions and their cosmological implications (e.g. M-theory and cosmology, brane cosmology). JCAP''s coverage also includes topics such as formation, dynamics and clustering of galaxies, pre-galactic star formation, x-ray astronomy, radio astronomy, gravitational lensing, active galactic nuclei, intergalactic and interstellar matter.