Photonic axion insulator

IF 44.7 1区 综合性期刊 Q1 MULTIDISCIPLINARY SCIENCES Science Pub Date : 2025-01-09 DOI:10.1126/science.adr5234
Gui-Geng Liu, Subhaskar Mandal, Xiang Xi, Qiang Wang, Chiara Devescovi, Antonio Morales-Pérez, Ziyao Wang, Linyun Yang, Rimi Banerjee, Yang Long, Yan Meng, Peiheng Zhou, Zhen Gao, Yidong Chong, Aitzol García-Etxarri, Maia G. Vergniory, Baile Zhang
{"title":"Photonic axion insulator","authors":"Gui-Geng Liu, Subhaskar Mandal, Xiang Xi, Qiang Wang, Chiara Devescovi, Antonio Morales-Pérez, Ziyao Wang, Linyun Yang, Rimi Banerjee, Yang Long, Yan Meng, Peiheng Zhou, Zhen Gao, Yidong Chong, Aitzol García-Etxarri, Maia G. Vergniory, Baile Zhang","doi":"10.1126/science.adr5234","DOIUrl":null,"url":null,"abstract":"Axions, hypothetical elementary particles that remain undetectable in nature, can arise as quasiparticles in three-dimensional crystals known as axion insulators. Previous implementations of axion insulators have largely been limited to two-dimensional systems, leaving their topological properties in three dimensions unexplored in experiment. Here, we realize an axion insulator in a three-dimensional photonic crystal and probe its topological properties. Demonstrated features include half-quantized Chern numbers on each surface that resembles a fractional Chern insulator, unidirectional chiral hinge states forming topological transport in three dimensions, and arithmetic operations between fractional and integer Chern numbers. Our work experimentally establishes the axion insulator as a three-dimensional topological phase of matter and enables chiral states to form complex, unidirectional three-dimensional networks through braiding.","PeriodicalId":21678,"journal":{"name":"Science","volume":"35 1","pages":""},"PeriodicalIF":44.7000,"publicationDate":"2025-01-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Science","FirstCategoryId":"103","ListUrlMain":"https://doi.org/10.1126/science.adr5234","RegionNum":1,"RegionCategory":"综合性期刊","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MULTIDISCIPLINARY SCIENCES","Score":null,"Total":0}
引用次数: 0

Abstract

Axions, hypothetical elementary particles that remain undetectable in nature, can arise as quasiparticles in three-dimensional crystals known as axion insulators. Previous implementations of axion insulators have largely been limited to two-dimensional systems, leaving their topological properties in three dimensions unexplored in experiment. Here, we realize an axion insulator in a three-dimensional photonic crystal and probe its topological properties. Demonstrated features include half-quantized Chern numbers on each surface that resembles a fractional Chern insulator, unidirectional chiral hinge states forming topological transport in three dimensions, and arithmetic operations between fractional and integer Chern numbers. Our work experimentally establishes the axion insulator as a three-dimensional topological phase of matter and enables chiral states to form complex, unidirectional three-dimensional networks through braiding.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
光子轴子绝缘体
轴子是一种假设的基本粒子,在自然界中无法探测到,它可以在三维晶体中以准粒子的形式出现,称为轴子绝缘体。以前轴子绝缘体的实现在很大程度上局限于二维系统,使其在三维的拓扑性质在实验中未被探索。本文在三维光子晶体中实现了一种轴子绝缘子,并对其拓扑性质进行了研究。演示的特征包括每个表面上的半量子化陈氏数,类似于分数陈氏绝缘子,单向手性铰链状态形成三维拓扑输运,以及分数陈氏数和整数陈氏数之间的算术运算。我们的工作通过实验建立了轴子绝缘体作为物质的三维拓扑相,并使手性态能够通过编织形成复杂的单向三维网络。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Science
Science 综合性期刊-综合性期刊
CiteScore
61.10
自引率
0.90%
发文量
0
审稿时长
2.1 months
期刊介绍: Science is a leading outlet for scientific news, commentary, and cutting-edge research. Through its print and online incarnations, Science reaches an estimated worldwide readership of more than one million. Science’s authorship is global too, and its articles consistently rank among the world's most cited research. Science serves as a forum for discussion of important issues related to the advancement of science by publishing material on which a consensus has been reached as well as including the presentation of minority or conflicting points of view. Accordingly, all articles published in Science—including editorials, news and comment, and book reviews—are signed and reflect the individual views of the authors and not official points of view adopted by AAAS or the institutions with which the authors are affiliated. Science seeks to publish those papers that are most influential in their fields or across fields and that will significantly advance scientific understanding. Selected papers should present novel and broadly important data, syntheses, or concepts. They should merit recognition by the wider scientific community and general public provided by publication in Science, beyond that provided by specialty journals. Science welcomes submissions from all fields of science and from any source. The editors are committed to the prompt evaluation and publication of submitted papers while upholding high standards that support reproducibility of published research. Science is published weekly; selected papers are published online ahead of print.
期刊最新文献
Lysosomal dysfunction and inflammatory sterol metabolism in pulmonary arterial hypertension Highly multiplexed spatial transcriptomics in bacteria Variable impacts of land-based climate mitigation on habitat area for vertebrate diversity Photo-induced chirality in a nonchiral crystal Atomic locations and adsorbate interactions of Al single and pair sites in H-ZSM-5 zeolite
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1