Wafer-scale monolayer MoS 2 film integration for stable, efficient perovskite solar cells

IF 44.7 1区 综合性期刊 Q1 MULTIDISCIPLINARY SCIENCES Science Pub Date : 2025-01-09 DOI:10.1126/science.ado2351
Huachao Zai, Pengfei Yang, Jie Su, Ruiyang Yin, Rundong Fan, Yuetong Wu, Xiao Zhu, Yue Ma, Tong Zhou, Wentao Zhou, Yu Zhang, Zijian Huang, Yiting Jiang, Nengxu Li, Yang Bai, Cheng Zhu, Zhaohui Huang, Jingjing Chang, Qi Chen, Yanfeng Zhang, Huanping Zhou
{"title":"Wafer-scale monolayer MoS 2 film integration for stable, efficient perovskite solar cells","authors":"Huachao Zai, Pengfei Yang, Jie Su, Ruiyang Yin, Rundong Fan, Yuetong Wu, Xiao Zhu, Yue Ma, Tong Zhou, Wentao Zhou, Yu Zhang, Zijian Huang, Yiting Jiang, Nengxu Li, Yang Bai, Cheng Zhu, Zhaohui Huang, Jingjing Chang, Qi Chen, Yanfeng Zhang, Huanping Zhou","doi":"10.1126/science.ado2351","DOIUrl":null,"url":null,"abstract":"One of the primary challenges in commercializing perovskite solar cells (PSCs) is achieving both high power conversion efficiency (PCE) and sufficient stability. We integrate wafer-scale continuous monolayer MoS <jats:sub>2</jats:sub> buffers at the top and bottom of a perovskite layer through a transfer process. These films physically block ion migration of perovskite into carrier transport layers and chemically stabilize the formamidinium lead iodide phase through strong coordination interaction. Effective chemical passivation results from the formation of Pb-S bonds, and minority carriers are blocked through a type-I band alignment. Planar p-i-n PSCs (0.074 square centimeters) and modules (9.6 square centimeters) with MoS <jats:sub>2</jats:sub> /perovskite/MoS <jats:sub>2</jats:sub> configuration achieve PCEs up to 26.2% (certified steady-state PCE of 25.9%) and 22.8%, respectively. Moreover, the devices show excellent damp heat (85°C and 85% relative humidity) stability with &lt;5% PCE loss after 1200 hours and notable high temperature (85°C) operational stability with &lt;4% PCE loss after 1200 hours.","PeriodicalId":21678,"journal":{"name":"Science","volume":"24 1","pages":""},"PeriodicalIF":44.7000,"publicationDate":"2025-01-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Science","FirstCategoryId":"103","ListUrlMain":"https://doi.org/10.1126/science.ado2351","RegionNum":1,"RegionCategory":"综合性期刊","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MULTIDISCIPLINARY SCIENCES","Score":null,"Total":0}
引用次数: 0

Abstract

One of the primary challenges in commercializing perovskite solar cells (PSCs) is achieving both high power conversion efficiency (PCE) and sufficient stability. We integrate wafer-scale continuous monolayer MoS 2 buffers at the top and bottom of a perovskite layer through a transfer process. These films physically block ion migration of perovskite into carrier transport layers and chemically stabilize the formamidinium lead iodide phase through strong coordination interaction. Effective chemical passivation results from the formation of Pb-S bonds, and minority carriers are blocked through a type-I band alignment. Planar p-i-n PSCs (0.074 square centimeters) and modules (9.6 square centimeters) with MoS 2 /perovskite/MoS 2 configuration achieve PCEs up to 26.2% (certified steady-state PCE of 25.9%) and 22.8%, respectively. Moreover, the devices show excellent damp heat (85°C and 85% relative humidity) stability with <5% PCE loss after 1200 hours and notable high temperature (85°C) operational stability with <4% PCE loss after 1200 hours.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
求助全文
约1分钟内获得全文 去求助
来源期刊
Science
Science 综合性期刊-综合性期刊
CiteScore
61.10
自引率
0.90%
发文量
0
审稿时长
2.1 months
期刊介绍: Science is a leading outlet for scientific news, commentary, and cutting-edge research. Through its print and online incarnations, Science reaches an estimated worldwide readership of more than one million. Science’s authorship is global too, and its articles consistently rank among the world's most cited research. Science serves as a forum for discussion of important issues related to the advancement of science by publishing material on which a consensus has been reached as well as including the presentation of minority or conflicting points of view. Accordingly, all articles published in Science—including editorials, news and comment, and book reviews—are signed and reflect the individual views of the authors and not official points of view adopted by AAAS or the institutions with which the authors are affiliated. Science seeks to publish those papers that are most influential in their fields or across fields and that will significantly advance scientific understanding. Selected papers should present novel and broadly important data, syntheses, or concepts. They should merit recognition by the wider scientific community and general public provided by publication in Science, beyond that provided by specialty journals. Science welcomes submissions from all fields of science and from any source. The editors are committed to the prompt evaluation and publication of submitted papers while upholding high standards that support reproducibility of published research. Science is published weekly; selected papers are published online ahead of print.
期刊最新文献
Sexually dimorphic dopaminergic circuits determine sex preference Grazing can reduce wildfire risk amid climate change Tropical forest clearance impacts biodiversity and function, whereas logging changes structure Fluorine-rich poly(arylene amine) membranes for the separation of liquid aliphatic compounds Photonic axion insulator
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1