Orthogonal-Group-Controlled Site-Selective I-Branching of Poly-N-acetyllactosamine Chains Reveals Unique Binding Specificities of Proteins towards I-Antigens
Shumin Bao, Tangliang Shen, Congcong Chen, Jinghua Han, Virginia Tajadura-Ortega, MohammadHossein Shabahang, Zhenming Du, Ten Feizi, Wengang Chai, Lei Li
{"title":"Orthogonal-Group-Controlled Site-Selective I-Branching of Poly-N-acetyllactosamine Chains Reveals Unique Binding Specificities of Proteins towards I-Antigens","authors":"Shumin Bao, Tangliang Shen, Congcong Chen, Jinghua Han, Virginia Tajadura-Ortega, MohammadHossein Shabahang, Zhenming Du, Ten Feizi, Wengang Chai, Lei Li","doi":"10.1002/anie.202420676","DOIUrl":null,"url":null,"abstract":"Poly-N-acetyllactosamine (poly-LacNAc) is ubiquitously expressed on cell surface glycoconjugates, serving as the backbone of complex glycans and an extended scaffold that presents diverse glycan epitopes. The branching of poly-LacNAc, where internal galactose (Gal) residues have β1-6 linked N-acetylglucosamine (GlcNAc) attached, forms the blood group I-antigen, which is closely associated with various physiological and pathological processes including cancer progression. However, the underlying mechanisms remain unclear as many of the I-antigen sequences are undefined and inaccessible. In this study, we developed a highly efficient orthogonal-group-controlled approach to access site-selectively I-branched poly-LacNAc chains. The approach relies on three orthogonal protecting groups, each of them “caps” one internal Gal residue of poly-LacNAc. These groups can be readily “decapped” by specific enzymes or chemical reduction to expose desired sites for GCNT2-catalyzed I-branching. This approach enabled the rapid preparation of a diverse library of 41 linear and branched poly-LacNAc glycans from a single precursor. Glycan microarray analysis using these complex glycans revealed unique recognitions of I-branches by lectins, anti-I mAbs, and galectins. Surprisingly, oxidized forms of linear poly-LacNAc strongly bound to several glycan-binding proteins (GBPs). These findings help to bridge the gap in recognition of I-branching and open new avenues for therapeutic development by targeting galectins.","PeriodicalId":125,"journal":{"name":"Angewandte Chemie International Edition","volume":"75 1","pages":""},"PeriodicalIF":16.1000,"publicationDate":"2025-01-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Angewandte Chemie International Edition","FirstCategoryId":"92","ListUrlMain":"https://doi.org/10.1002/anie.202420676","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
Poly-N-acetyllactosamine (poly-LacNAc) is ubiquitously expressed on cell surface glycoconjugates, serving as the backbone of complex glycans and an extended scaffold that presents diverse glycan epitopes. The branching of poly-LacNAc, where internal galactose (Gal) residues have β1-6 linked N-acetylglucosamine (GlcNAc) attached, forms the blood group I-antigen, which is closely associated with various physiological and pathological processes including cancer progression. However, the underlying mechanisms remain unclear as many of the I-antigen sequences are undefined and inaccessible. In this study, we developed a highly efficient orthogonal-group-controlled approach to access site-selectively I-branched poly-LacNAc chains. The approach relies on three orthogonal protecting groups, each of them “caps” one internal Gal residue of poly-LacNAc. These groups can be readily “decapped” by specific enzymes or chemical reduction to expose desired sites for GCNT2-catalyzed I-branching. This approach enabled the rapid preparation of a diverse library of 41 linear and branched poly-LacNAc glycans from a single precursor. Glycan microarray analysis using these complex glycans revealed unique recognitions of I-branches by lectins, anti-I mAbs, and galectins. Surprisingly, oxidized forms of linear poly-LacNAc strongly bound to several glycan-binding proteins (GBPs). These findings help to bridge the gap in recognition of I-branching and open new avenues for therapeutic development by targeting galectins.
期刊介绍:
Angewandte Chemie, a journal of the German Chemical Society (GDCh), maintains a leading position among scholarly journals in general chemistry with an impressive Impact Factor of 16.6 (2022 Journal Citation Reports, Clarivate, 2023). Published weekly in a reader-friendly format, it features new articles almost every day. Established in 1887, Angewandte Chemie is a prominent chemistry journal, offering a dynamic blend of Review-type articles, Highlights, Communications, and Research Articles on a weekly basis, making it unique in the field.