S. Teng, Dedong Wang, Alexander Y. Drozdov, Yuri Y. Shprits, Zeyin Wu, Y. X. Hao, Z. Yao, J. Zhang
{"title":"Quasi-Periodic Emissions in Saturn's Magnetosphere and Their Effects on Electrons","authors":"S. Teng, Dedong Wang, Alexander Y. Drozdov, Yuri Y. Shprits, Zeyin Wu, Y. X. Hao, Z. Yao, J. Zhang","doi":"10.1029/2024gl112061","DOIUrl":null,"url":null,"abstract":"Investigations into quasiperiodic (QP) whistler mode emissions within Saturn's magnetosphere have uncovered distinctive characteristics of these emissions, which display a nearly periodic rising tone structure in the wave spectrogram, characterized by modulation periods of several minutes. These QP emissions are predominantly observed at low L-shells around 5 and near the magnetic equator. Utilizing a quasi-linear analysis framework, we evaluate the effects of these waves on the dynamics of energetic electrons. Our analysis suggests that these QP emissions can efficiently cause the loss of electrons within the energy range from 10 to 60 keV over a timescale of tens of minutes. By incorporating these findings into Fokker-Planck simulations, we find minimal acceleration effects. This study is the first to examine QP emissions and their implications for energetic electron dynamics in Saturn's magnetosphere, highlighting their potentially significant contribution to the magnetospheric processes and dynamics.","PeriodicalId":12523,"journal":{"name":"Geophysical Research Letters","volume":"19 1","pages":""},"PeriodicalIF":4.6000,"publicationDate":"2025-01-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Geophysical Research Letters","FirstCategoryId":"89","ListUrlMain":"https://doi.org/10.1029/2024gl112061","RegionNum":1,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"GEOSCIENCES, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
Investigations into quasiperiodic (QP) whistler mode emissions within Saturn's magnetosphere have uncovered distinctive characteristics of these emissions, which display a nearly periodic rising tone structure in the wave spectrogram, characterized by modulation periods of several minutes. These QP emissions are predominantly observed at low L-shells around 5 and near the magnetic equator. Utilizing a quasi-linear analysis framework, we evaluate the effects of these waves on the dynamics of energetic electrons. Our analysis suggests that these QP emissions can efficiently cause the loss of electrons within the energy range from 10 to 60 keV over a timescale of tens of minutes. By incorporating these findings into Fokker-Planck simulations, we find minimal acceleration effects. This study is the first to examine QP emissions and their implications for energetic electron dynamics in Saturn's magnetosphere, highlighting their potentially significant contribution to the magnetospheric processes and dynamics.
期刊介绍:
Geophysical Research Letters (GRL) publishes high-impact, innovative, and timely research on major scientific advances in all the major geoscience disciplines. Papers are communications-length articles and should have broad and immediate implications in their discipline or across the geosciences. GRLmaintains the fastest turn-around of all high-impact publications in the geosciences and works closely with authors to ensure broad visibility of top papers.