Yu Jia, Zepeng Mao, Han Zhang, Jun Zhang, Zhen Zhang, Noureddine Abidi, Lucian A. Lucia
{"title":"“Snakeskin” Bioinspired Design for Polymer Composite with Enhanced Positive Temperature-Dependent Thermal Conductivity","authors":"Yu Jia, Zepeng Mao, Han Zhang, Jun Zhang, Zhen Zhang, Noureddine Abidi, Lucian A. Lucia","doi":"10.1021/acs.nanolett.4c05237","DOIUrl":null,"url":null,"abstract":"Albeit there is widespread application of thermally conductive polymer composites, one challenge is their typical negative temperature dependence on thermal conductivity (TDTC) due to the mismatch in thermal expansion between the polymer and fillers, creating voids at the interfaces. Inspired by the hierarchical structure of snakeskin, where rigid scales and a soft intergap manage expansion, we designed a segregated structure by coating a high-expansion high impact polystyrene (HIPS)/graphite (Gt) composite with a copper alloy. We hypothesize that the Cu alloy restricts the thermal expansion of HIPS/Gt while forming a pseudoconductive network, enhancing TDTC and thermal conductivity (TC). The results demonstrate that, compared to a composite prepared via conventional melt mixing, the bioinspired structure increases TDTC between −20 and 80 °C by 290% and TC at 80 °C by 46.5%, respectively. As a bioinspired strategy, our work is the first report on a straightforward, scalable, yet effective approach to design and enhance thermal management of materials.","PeriodicalId":53,"journal":{"name":"Nano Letters","volume":"35 1","pages":""},"PeriodicalIF":9.6000,"publicationDate":"2025-01-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nano Letters","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1021/acs.nanolett.4c05237","RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
Albeit there is widespread application of thermally conductive polymer composites, one challenge is their typical negative temperature dependence on thermal conductivity (TDTC) due to the mismatch in thermal expansion between the polymer and fillers, creating voids at the interfaces. Inspired by the hierarchical structure of snakeskin, where rigid scales and a soft intergap manage expansion, we designed a segregated structure by coating a high-expansion high impact polystyrene (HIPS)/graphite (Gt) composite with a copper alloy. We hypothesize that the Cu alloy restricts the thermal expansion of HIPS/Gt while forming a pseudoconductive network, enhancing TDTC and thermal conductivity (TC). The results demonstrate that, compared to a composite prepared via conventional melt mixing, the bioinspired structure increases TDTC between −20 and 80 °C by 290% and TC at 80 °C by 46.5%, respectively. As a bioinspired strategy, our work is the first report on a straightforward, scalable, yet effective approach to design and enhance thermal management of materials.
期刊介绍:
Nano Letters serves as a dynamic platform for promptly disseminating original results in fundamental, applied, and emerging research across all facets of nanoscience and nanotechnology. A pivotal criterion for inclusion within Nano Letters is the convergence of at least two different areas or disciplines, ensuring a rich interdisciplinary scope. The journal is dedicated to fostering exploration in diverse areas, including:
- Experimental and theoretical findings on physical, chemical, and biological phenomena at the nanoscale
- Synthesis, characterization, and processing of organic, inorganic, polymer, and hybrid nanomaterials through physical, chemical, and biological methodologies
- Modeling and simulation of synthetic, assembly, and interaction processes
- Realization of integrated nanostructures and nano-engineered devices exhibiting advanced performance
- Applications of nanoscale materials in living and environmental systems
Nano Letters is committed to advancing and showcasing groundbreaking research that intersects various domains, fostering innovation and collaboration in the ever-evolving field of nanoscience and nanotechnology.