{"title":"Data-Driven Composite Nonlinear Feedback Control for Semi-Global Output Regulation of Unknown Linear Systems With Input Saturation","authors":"Hanwen Cai;Weiyao Lan;Xiao Yu","doi":"10.1109/LCSYS.2024.3523244","DOIUrl":null,"url":null,"abstract":"This letter addresses the semi-global output regulation problem for continuous-time linear systems with input saturation and unknown dynamics. First, we employ a low-gain technique to design a state-feedback linear control law such that the control input operates within the linear region of the actuator. Then, taking it as the linear part, we construct a composite nonlinear feedback (CNF) control law, consisting of both linear and nonlinear parts, to improve the transient performance of the closed-loop system. Without requiring prior knowledge of the system dynamics or an initial stabilizing control policy, we propose a novel adaptive dynamic programming (ADP) learning algorithm. This algorithm learns both the linear part and the nonlinear part of the CNF control law using the same set of data. In addition, the algorithm uses single-layer filters, eliminating the need for integral operations during the learning process. Finally, the effectiveness of the proposed algorithm is demonstrated by an illustrative example.","PeriodicalId":37235,"journal":{"name":"IEEE Control Systems Letters","volume":"8 ","pages":"3225-3230"},"PeriodicalIF":2.4000,"publicationDate":"2024-12-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Control Systems Letters","FirstCategoryId":"1085","ListUrlMain":"https://ieeexplore.ieee.org/document/10816386/","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"AUTOMATION & CONTROL SYSTEMS","Score":null,"Total":0}
引用次数: 0
Abstract
This letter addresses the semi-global output regulation problem for continuous-time linear systems with input saturation and unknown dynamics. First, we employ a low-gain technique to design a state-feedback linear control law such that the control input operates within the linear region of the actuator. Then, taking it as the linear part, we construct a composite nonlinear feedback (CNF) control law, consisting of both linear and nonlinear parts, to improve the transient performance of the closed-loop system. Without requiring prior knowledge of the system dynamics or an initial stabilizing control policy, we propose a novel adaptive dynamic programming (ADP) learning algorithm. This algorithm learns both the linear part and the nonlinear part of the CNF control law using the same set of data. In addition, the algorithm uses single-layer filters, eliminating the need for integral operations during the learning process. Finally, the effectiveness of the proposed algorithm is demonstrated by an illustrative example.