Data-Driven Composite Nonlinear Feedback Control for Semi-Global Output Regulation of Unknown Linear Systems With Input Saturation

IF 2.4 Q2 AUTOMATION & CONTROL SYSTEMS IEEE Control Systems Letters Pub Date : 2024-12-26 DOI:10.1109/LCSYS.2024.3523244
Hanwen Cai;Weiyao Lan;Xiao Yu
{"title":"Data-Driven Composite Nonlinear Feedback Control for Semi-Global Output Regulation of Unknown Linear Systems With Input Saturation","authors":"Hanwen Cai;Weiyao Lan;Xiao Yu","doi":"10.1109/LCSYS.2024.3523244","DOIUrl":null,"url":null,"abstract":"This letter addresses the semi-global output regulation problem for continuous-time linear systems with input saturation and unknown dynamics. First, we employ a low-gain technique to design a state-feedback linear control law such that the control input operates within the linear region of the actuator. Then, taking it as the linear part, we construct a composite nonlinear feedback (CNF) control law, consisting of both linear and nonlinear parts, to improve the transient performance of the closed-loop system. Without requiring prior knowledge of the system dynamics or an initial stabilizing control policy, we propose a novel adaptive dynamic programming (ADP) learning algorithm. This algorithm learns both the linear part and the nonlinear part of the CNF control law using the same set of data. In addition, the algorithm uses single-layer filters, eliminating the need for integral operations during the learning process. Finally, the effectiveness of the proposed algorithm is demonstrated by an illustrative example.","PeriodicalId":37235,"journal":{"name":"IEEE Control Systems Letters","volume":"8 ","pages":"3225-3230"},"PeriodicalIF":2.4000,"publicationDate":"2024-12-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Control Systems Letters","FirstCategoryId":"1085","ListUrlMain":"https://ieeexplore.ieee.org/document/10816386/","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"AUTOMATION & CONTROL SYSTEMS","Score":null,"Total":0}
引用次数: 0

Abstract

This letter addresses the semi-global output regulation problem for continuous-time linear systems with input saturation and unknown dynamics. First, we employ a low-gain technique to design a state-feedback linear control law such that the control input operates within the linear region of the actuator. Then, taking it as the linear part, we construct a composite nonlinear feedback (CNF) control law, consisting of both linear and nonlinear parts, to improve the transient performance of the closed-loop system. Without requiring prior knowledge of the system dynamics or an initial stabilizing control policy, we propose a novel adaptive dynamic programming (ADP) learning algorithm. This algorithm learns both the linear part and the nonlinear part of the CNF control law using the same set of data. In addition, the algorithm uses single-layer filters, eliminating the need for integral operations during the learning process. Finally, the effectiveness of the proposed algorithm is demonstrated by an illustrative example.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
输入饱和未知线性系统半全局输出调节的数据驱动复合非线性反馈控制
本文研究具有输入饱和和未知动态的连续线性系统的半全局输出调节问题。首先,我们采用低增益技术设计状态反馈线性控制律,使控制输入在执行器的线性区域内工作。然后,以其为线性部分,构造由线性部分和非线性部分组成的复合非线性反馈(CNF)控制律,以改善闭环系统的暂态性能。我们提出了一种新的自适应动态规划(ADP)学习算法,而不需要事先了解系统动力学或初始稳定控制策略。该算法使用同一组数据学习CNF控制律的线性部分和非线性部分。此外,该算法采用单层滤波器,省去了学习过程中的积分运算。最后,通过一个算例验证了该算法的有效性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
IEEE Control Systems Letters
IEEE Control Systems Letters Mathematics-Control and Optimization
CiteScore
4.40
自引率
13.30%
发文量
471
期刊最新文献
Robust and Exponential Stability in Barrier-Certified Systems via Contracting Piecewise Smooth Dynamics PID Control of MIMO Nonlinear Uncertain Systems With Low Relative Degrees Robust NMPC for Uncalibrated IBVS Control of AUVs Contraction Analysis of Continuation Method for Suboptimal Model Predictive Control Spiking Nonlinear Opinion Dynamics (S-NOD) for Agile Decision-Making
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1