Reducing Data Volume in News Topic Classification: Deep Learning Framework and Dataset

Luigi Serreli;Claudio Marche;Michele Nitti
{"title":"Reducing Data Volume in News Topic Classification: Deep Learning Framework and Dataset","authors":"Luigi Serreli;Claudio Marche;Michele Nitti","doi":"10.1109/OJCS.2024.3519747","DOIUrl":null,"url":null,"abstract":"Withthe rise of smart devices and technological advancements, accessing vast amounts of information has become easier than ever before. However, sorting and categorising such an overwhelming volume of content has become increasingly challenging. This article introduces a new framework for classifying news articles based on a Bidirectional LSTM (BiLSTM) network and an attention mechanism. The article also presents a new dataset of 60 000 news articles from various global sources. Furthermore, it proposes a methodology for reducing data volume by extracting key sentences using an algorithm resulting in inference times that are, on average, 50% shorter than the original document without compromising the system's accuracy. Experimental evaluations demonstrate that our framework outperforms existing methodologies in terms of accuracy. Our system's accuracy has been compared with various works using two popular datasets, AG News and BBC News, and has achieved excellent results of 99.7% and 94.55%, respectively.","PeriodicalId":13205,"journal":{"name":"IEEE Open Journal of the Computer Society","volume":"6 ","pages":"152-163"},"PeriodicalIF":0.0000,"publicationDate":"2024-12-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=10806791","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Open Journal of the Computer Society","FirstCategoryId":"1085","ListUrlMain":"https://ieeexplore.ieee.org/document/10806791/","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Withthe rise of smart devices and technological advancements, accessing vast amounts of information has become easier than ever before. However, sorting and categorising such an overwhelming volume of content has become increasingly challenging. This article introduces a new framework for classifying news articles based on a Bidirectional LSTM (BiLSTM) network and an attention mechanism. The article also presents a new dataset of 60 000 news articles from various global sources. Furthermore, it proposes a methodology for reducing data volume by extracting key sentences using an algorithm resulting in inference times that are, on average, 50% shorter than the original document without compromising the system's accuracy. Experimental evaluations demonstrate that our framework outperforms existing methodologies in terms of accuracy. Our system's accuracy has been compared with various works using two popular datasets, AG News and BBC News, and has achieved excellent results of 99.7% and 94.55%, respectively.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
减少新闻主题分类中的数据量:深度学习框架和数据集
随着智能设备的兴起和技术的进步,获取大量信息变得比以往任何时候都容易。然而,对如此庞大的内容进行排序和分类变得越来越具有挑战性。本文介绍了一种新的基于双向LSTM (BiLSTM)网络和注意机制的新闻分类框架。本文还介绍了来自全球各种来源的6万篇新闻文章的新数据集。此外,它提出了一种减少数据量的方法,通过使用一种算法提取关键句子,导致推理时间平均比原始文档短50%,而不会影响系统的准确性。实验评估表明,我们的框架在准确性方面优于现有的方法。利用AG News和BBC News这两个比较流行的数据集,我们的系统的准确率与各种作品进行了比较,分别取得了99.7%和94.55%的优异成绩。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
CiteScore
12.60
自引率
0.00%
发文量
0
期刊最新文献
A Transformer-Based Intelligent System for Hierarchical Occupational Classification in the Labor Market Application of Vision Transformers to Contamination Detection in Densely Cluttered Waste Scenes A Dual-Encoder Approach to Bankruptcy Prediction With Financial Ratios and Corporate Disclosures An Efficient and Scalable Montgomery Modular Multiplier for Cryptographic Applications Epsilon-Guided Spatiotemporal Transformer: An Exponential Error Reduction for Multi-Memory Multilingual Sign Interpreter
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1