Enhancing Cloud Security: A Multi-Factor Authentication and Adaptive Cryptography Approach Using Machine Learning Techniques

K. Sasikumar;Sivakumar Nagarajan
{"title":"Enhancing Cloud Security: A Multi-Factor Authentication and Adaptive Cryptography Approach Using Machine Learning Techniques","authors":"K. Sasikumar;Sivakumar Nagarajan","doi":"10.1109/OJCS.2025.3538557","DOIUrl":null,"url":null,"abstract":"The rapid expansion of cloud computing underscores the critical need for advanced security measures to protect sensitive data on remote servers. Authentication is crucial for safeguarding these data. Despite various proposed methods, vulnerabilities persist. This article introduces a novel multi-factor authentication system integrated with a hybrid cryptographic framework that dynamically changes encryption algorithms using machine learning techniques based on an intrusion-detection system. The proposed system employs passwords, conditional attributes, and fingerprint authentication to derive the encryption key from fingerprint data. It uses a dual-encryption strategy that combines five algorithm pairs: AES + HMAC (SHA-256), ECC + HMAC (SHA-512), HMAC-MD5 + PBKDF2, Twofish + Argon2, and Blowfish + HMAC SHA3-256. A Hybrid CNN-transformer model predicts and classifies attacks by dynamically adjusting an encryption algorithm to secure the data. The framework exhibited strong resilience against brute force, spoofing, phishing, guessing, and impersonation attacks. The proposed model achieved a commendable accuracy of 96.8%, outperforming other models. Implementing this framework in a cloud authentication environment significantly enhances data confidentiality and protects against unauthorized access. This study highlights the potential of combining multi-factor authentication and adaptive cryptography to obtain robust cloud security solutions.","PeriodicalId":13205,"journal":{"name":"IEEE Open Journal of the Computer Society","volume":"6 ","pages":"392-402"},"PeriodicalIF":0.0000,"publicationDate":"2025-02-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=10872830","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Open Journal of the Computer Society","FirstCategoryId":"1085","ListUrlMain":"https://ieeexplore.ieee.org/document/10872830/","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

The rapid expansion of cloud computing underscores the critical need for advanced security measures to protect sensitive data on remote servers. Authentication is crucial for safeguarding these data. Despite various proposed methods, vulnerabilities persist. This article introduces a novel multi-factor authentication system integrated with a hybrid cryptographic framework that dynamically changes encryption algorithms using machine learning techniques based on an intrusion-detection system. The proposed system employs passwords, conditional attributes, and fingerprint authentication to derive the encryption key from fingerprint data. It uses a dual-encryption strategy that combines five algorithm pairs: AES + HMAC (SHA-256), ECC + HMAC (SHA-512), HMAC-MD5 + PBKDF2, Twofish + Argon2, and Blowfish + HMAC SHA3-256. A Hybrid CNN-transformer model predicts and classifies attacks by dynamically adjusting an encryption algorithm to secure the data. The framework exhibited strong resilience against brute force, spoofing, phishing, guessing, and impersonation attacks. The proposed model achieved a commendable accuracy of 96.8%, outperforming other models. Implementing this framework in a cloud authentication environment significantly enhances data confidentiality and protects against unauthorized access. This study highlights the potential of combining multi-factor authentication and adaptive cryptography to obtain robust cloud security solutions.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
求助全文
约1分钟内获得全文 去求助
来源期刊
CiteScore
12.60
自引率
0.00%
发文量
0
期刊最新文献
A Hybrid Temporal Convolutional Network and Transformer Model for Accurate and Scalable Sales Forecasting Enhancing Cloud Security: A Multi-Factor Authentication and Adaptive Cryptography Approach Using Machine Learning Techniques An Efficient and Privacy-Preserving Federated Learning Approach Based on Homomorphic Encryption The Rise of Cognitive SOCs: A Systematic Literature Review on AI Approaches Generative AI and the Metaverse: A Scoping Review of Ethical and Legal Challenges
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1