Enhancing Cloud Security: A Multi-Factor Authentication and Adaptive Cryptography Approach Using Machine Learning Techniques

K. Sasikumar;Sivakumar Nagarajan
{"title":"Enhancing Cloud Security: A Multi-Factor Authentication and Adaptive Cryptography Approach Using Machine Learning Techniques","authors":"K. Sasikumar;Sivakumar Nagarajan","doi":"10.1109/OJCS.2025.3538557","DOIUrl":null,"url":null,"abstract":"The rapid expansion of cloud computing underscores the critical need for advanced security measures to protect sensitive data on remote servers. Authentication is crucial for safeguarding these data. Despite various proposed methods, vulnerabilities persist. This article introduces a novel multi-factor authentication system integrated with a hybrid cryptographic framework that dynamically changes encryption algorithms using machine learning techniques based on an intrusion-detection system. The proposed system employs passwords, conditional attributes, and fingerprint authentication to derive the encryption key from fingerprint data. It uses a dual-encryption strategy that combines five algorithm pairs: AES + HMAC (SHA-256), ECC + HMAC (SHA-512), HMAC-MD5 + PBKDF2, Twofish + Argon2, and Blowfish + HMAC SHA3-256. A Hybrid CNN-transformer model predicts and classifies attacks by dynamically adjusting an encryption algorithm to secure the data. The framework exhibited strong resilience against brute force, spoofing, phishing, guessing, and impersonation attacks. The proposed model achieved a commendable accuracy of 96.8%, outperforming other models. Implementing this framework in a cloud authentication environment significantly enhances data confidentiality and protects against unauthorized access. This study highlights the potential of combining multi-factor authentication and adaptive cryptography to obtain robust cloud security solutions.","PeriodicalId":13205,"journal":{"name":"IEEE Open Journal of the Computer Society","volume":"6 ","pages":"392-402"},"PeriodicalIF":0.0000,"publicationDate":"2025-02-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=10872830","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Open Journal of the Computer Society","FirstCategoryId":"1085","ListUrlMain":"https://ieeexplore.ieee.org/document/10872830/","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

The rapid expansion of cloud computing underscores the critical need for advanced security measures to protect sensitive data on remote servers. Authentication is crucial for safeguarding these data. Despite various proposed methods, vulnerabilities persist. This article introduces a novel multi-factor authentication system integrated with a hybrid cryptographic framework that dynamically changes encryption algorithms using machine learning techniques based on an intrusion-detection system. The proposed system employs passwords, conditional attributes, and fingerprint authentication to derive the encryption key from fingerprint data. It uses a dual-encryption strategy that combines five algorithm pairs: AES + HMAC (SHA-256), ECC + HMAC (SHA-512), HMAC-MD5 + PBKDF2, Twofish + Argon2, and Blowfish + HMAC SHA3-256. A Hybrid CNN-transformer model predicts and classifies attacks by dynamically adjusting an encryption algorithm to secure the data. The framework exhibited strong resilience against brute force, spoofing, phishing, guessing, and impersonation attacks. The proposed model achieved a commendable accuracy of 96.8%, outperforming other models. Implementing this framework in a cloud authentication environment significantly enhances data confidentiality and protects against unauthorized access. This study highlights the potential of combining multi-factor authentication and adaptive cryptography to obtain robust cloud security solutions.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
增强云安全:使用机器学习技术的多因素认证和自适应加密方法
云计算的迅速发展凸显了对先进安全措施的迫切需求,以保护远程服务器上的敏感数据。身份验证对于保护这些数据至关重要。尽管提出了各种方法,但漏洞仍然存在。本文介绍了一种新型的多因素身份验证系统,该系统集成了一个混合密码框架,该框架使用基于入侵检测系统的机器学习技术动态更改加密算法。该系统采用密码、条件属性和指纹认证等方法从指纹数据中获取加密密钥。它采用双加密策略,结合了五种算法对:AES + HMAC (SHA-256)、ECC + HMAC (SHA-512)、HMAC- md5 + PBKDF2、Twofish + Argon2和Blowfish + HMAC SHA3-256。混合CNN-transformer模型通过动态调整加密算法来预测和分类攻击以保护数据。该框架对暴力破解、欺骗、网络钓鱼、猜测和冒充攻击表现出强大的弹性。该模型的准确率达到96.8%,优于其他模型。在云身份验证环境中实现此框架可显著增强数据机密性并防止未经授权的访问。这项研究强调了将多因素认证和自适应加密相结合以获得强大的云安全解决方案的潜力。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
CiteScore
12.60
自引率
0.00%
发文量
0
期刊最新文献
Validating AI-Driven Nudge Recommendations: A/B Testing Two-Tower and Bandit Models in Simulated Digital Banking Environment 2025 Reviewers List* AG-CLIP: Attribute-Guided CLIP for Zero-Shot Fine-Grained Recognition MM-3DAttNet: Multi-Modal 3D Attention Network for MGMT Methylation Prediction EMO-CARE: EEG Multi-Scale Temporal Modeling With Channel-Aware Feature Attention for Robust Subject-Independent Emotion Recognition
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1