Projected Forward Gradient-Guided Frank-Wolfe Algorithm via Variance Reduction

IF 2.4 Q2 AUTOMATION & CONTROL SYSTEMS IEEE Control Systems Letters Pub Date : 2024-12-26 DOI:10.1109/LCSYS.2024.3523243
Mohammadreza Rostami;Solmaz S. Kia
{"title":"Projected Forward Gradient-Guided Frank-Wolfe Algorithm via Variance Reduction","authors":"Mohammadreza Rostami;Solmaz S. Kia","doi":"10.1109/LCSYS.2024.3523243","DOIUrl":null,"url":null,"abstract":"This letter aims to enhance the use of the Frank-Wolfe (FW) algorithm for training deep neural networks. Similar to any gradient-based optimization algorithm, FW suffers from high computational and memory costs when computing gradients for DNNs. This letter introduces the application of the recently proposed projected forward gradient (Projected-FG) method to the FW framework, offering reduced computational cost similar to backpropagation and low memory utilization akin to forward propagation. Our results show that trivial application of the Projected-FG introduces non-vanishing convergence error due to the stochastic noise that the Projected-FG method introduces in the process. This noise results in an non-vanishing variance in the Projected-FG estimated gradient. To address this, we propose a variance reduction approach by aggregating historical Projected-FG directions. We demonstrate rigorously that this approach ensures convergence to the optimal solution for convex functions and to a stationary point for non-convex functions. Simulations demonstrate our results.","PeriodicalId":37235,"journal":{"name":"IEEE Control Systems Letters","volume":"8 ","pages":"3153-3158"},"PeriodicalIF":2.4000,"publicationDate":"2024-12-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Control Systems Letters","FirstCategoryId":"1085","ListUrlMain":"https://ieeexplore.ieee.org/document/10816492/","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"AUTOMATION & CONTROL SYSTEMS","Score":null,"Total":0}
引用次数: 0

Abstract

This letter aims to enhance the use of the Frank-Wolfe (FW) algorithm for training deep neural networks. Similar to any gradient-based optimization algorithm, FW suffers from high computational and memory costs when computing gradients for DNNs. This letter introduces the application of the recently proposed projected forward gradient (Projected-FG) method to the FW framework, offering reduced computational cost similar to backpropagation and low memory utilization akin to forward propagation. Our results show that trivial application of the Projected-FG introduces non-vanishing convergence error due to the stochastic noise that the Projected-FG method introduces in the process. This noise results in an non-vanishing variance in the Projected-FG estimated gradient. To address this, we propose a variance reduction approach by aggregating historical Projected-FG directions. We demonstrate rigorously that this approach ensures convergence to the optimal solution for convex functions and to a stationary point for non-convex functions. Simulations demonstrate our results.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
基于方差缩减的投影前向梯度引导Frank-Wolfe算法
这封信的目的是加强使用Frank-Wolfe (FW)算法来训练深度神经网络。与任何基于梯度的优化算法一样,FW在计算dnn的梯度时需要耗费大量的计算和内存。这封信介绍了最近提出的投影前向梯度(投影- fg)方法在FW框架中的应用,它提供了类似于反向传播的更低的计算成本和类似于前向传播的低内存利用率。我们的结果表明,由于投影- fg方法在过程中引入的随机噪声,投影- fg方法的平凡应用会引入非消失收敛误差。这种噪声导致投影- fg估计梯度的方差不消失。为了解决这个问题,我们提出了一种通过汇总历史project - fg方向来减少方差的方法。我们严格地证明了这种方法确保收敛到凸函数的最优解和非凸函数的平稳点。仿真验证了我们的结果。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
IEEE Control Systems Letters
IEEE Control Systems Letters Mathematics-Control and Optimization
CiteScore
4.40
自引率
13.30%
发文量
471
期刊最新文献
Data-Driven Analysis of T-Product-Based Dynamical Systems Novel Sufficient Conditions for Stabilization of Linear Positive Discrete-Time Systems Using Event-Triggered Control Modified Finite-Time and Prescribed-Time Convergence Parameter Estimators via the DREM Method Refined Eigenvalue Decay Bounds for Controllability Gramians of Sparsely-Actuated Symmetric LTI Systems Distributed Thompson Sampling Under Constrained Communication
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1