Probabilistic Data-Driven Invariance for Constrained Control of Nonlinear Systems

IF 2 Q2 AUTOMATION & CONTROL SYSTEMS IEEE Control Systems Letters Pub Date : 2024-12-18 DOI:10.1109/LCSYS.2024.3520025
Ali Kashani;Amy K. Strong;Leila J. Bridgeman;Claus Danielson
{"title":"Probabilistic Data-Driven Invariance for Constrained Control of Nonlinear Systems","authors":"Ali Kashani;Amy K. Strong;Leila J. Bridgeman;Claus Danielson","doi":"10.1109/LCSYS.2024.3520025","DOIUrl":null,"url":null,"abstract":"We present a novel direct data-driven method for computing constraint-admissible positive invariant sets for general nonlinear systems with compact constraint sets. Our approach employs machine learning techniques to lift the state space and approximate invariant sets using finite data. The invariant sets are parameterized as sub-level-sets of scalar linear functions in the lifted space, which is suitable for control applications. We provide probabilistic guarantees of invariance through scenario optimization, with probability bounds on robustness against the uncertainty inherent in the data-driven framework. As the amount of data increases, these probability bounds approach 1. We use our invariant sets to switch between a collection of controllers to select a controller which enforces constraints. We demonstrate the practicality of our method by applying it to a nonlinear autonomous driving lane-keeping scenario.","PeriodicalId":37235,"journal":{"name":"IEEE Control Systems Letters","volume":"8 ","pages":"3165-3170"},"PeriodicalIF":2.0000,"publicationDate":"2024-12-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Control Systems Letters","FirstCategoryId":"1085","ListUrlMain":"https://ieeexplore.ieee.org/document/10806858/","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"AUTOMATION & CONTROL SYSTEMS","Score":null,"Total":0}
引用次数: 0

Abstract

We present a novel direct data-driven method for computing constraint-admissible positive invariant sets for general nonlinear systems with compact constraint sets. Our approach employs machine learning techniques to lift the state space and approximate invariant sets using finite data. The invariant sets are parameterized as sub-level-sets of scalar linear functions in the lifted space, which is suitable for control applications. We provide probabilistic guarantees of invariance through scenario optimization, with probability bounds on robustness against the uncertainty inherent in the data-driven framework. As the amount of data increases, these probability bounds approach 1. We use our invariant sets to switch between a collection of controllers to select a controller which enforces constraints. We demonstrate the practicality of our method by applying it to a nonlinear autonomous driving lane-keeping scenario.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
非线性系统约束控制的概率数据驱动不变性
提出了一种计算具有紧约束集的一般非线性系统约束容许正不变量集的直接数据驱动方法。我们的方法采用机器学习技术来提升状态空间并使用有限数据近似不变集。不变量集被参数化为提升空间中标量线性函数的子水平集,适合于控制应用。我们通过场景优化提供不变性的概率保证,对数据驱动框架中固有的不确定性具有鲁棒性的概率界限。随着数据量的增加,这些概率界限趋于1。我们使用不变量集在控制器集合之间切换,以选择执行约束的控制器。我们通过将该方法应用于非线性自动驾驶车道保持场景来证明该方法的实用性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
IEEE Control Systems Letters
IEEE Control Systems Letters Mathematics-Control and Optimization
CiteScore
4.40
自引率
13.30%
发文量
471
期刊最新文献
Encoding High-Level Knowledge in Offline Multi-Agent Reinforcement Learning Using Reward Machines Formation Tracking for Nonlinear Systems via Prescribed-Time Noncooperative Game A Delay-Free Adaptive Stepsize for the Incremental Aggregated Gradient Method Safe Control Synthesis for Neural Network Control Systems via Constrained Zonotopes Ergodic Quasilinearization and Control for Brain Dynamics
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1