Orthogonal Modal Representation in Long-Term Risk Quantification for Dynamic Multi-Agent Systems

IF 2.4 Q2 AUTOMATION & CONTROL SYSTEMS IEEE Control Systems Letters Pub Date : 2024-12-26 DOI:10.1109/LCSYS.2024.3522949
Ryoma Yasunaga;Yorie Nakahira;Yutaka Hori
{"title":"Orthogonal Modal Representation in Long-Term Risk Quantification for Dynamic Multi-Agent Systems","authors":"Ryoma Yasunaga;Yorie Nakahira;Yutaka Hori","doi":"10.1109/LCSYS.2024.3522949","DOIUrl":null,"url":null,"abstract":"Quantifying long-term risk in large-scale multi-agent systems is critical for ensuring safe operation. However, the high dimensionality of these systems and the rarity of risk events can make the required computations prohibitively expensive. To overcome this challenge, we introduce a graph-based representation and efficient risk quantification techniques tailored for stochastic multi-agent systems. A key technical innovation is a systematic approach to decompose the estimation problem of system-wide safety probabilities into smaller, lower-dimensional sub-systems with sub-safe sets. This decomposition leverages the graph Fourier basis of the agent interaction network, providing a natural and scalable representation. The safety probabilities for these sub-systems are derived as solutions to a set of low-dimensional partial differential equations (PDEs). The proposed decomposition enables existing risk quantification approaches but does so without an exponential increase in computational complexity with respect to the number of agents.","PeriodicalId":37235,"journal":{"name":"IEEE Control Systems Letters","volume":"8 ","pages":"3177-3182"},"PeriodicalIF":2.4000,"publicationDate":"2024-12-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=10816487","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Control Systems Letters","FirstCategoryId":"1085","ListUrlMain":"https://ieeexplore.ieee.org/document/10816487/","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"AUTOMATION & CONTROL SYSTEMS","Score":null,"Total":0}
引用次数: 0

Abstract

Quantifying long-term risk in large-scale multi-agent systems is critical for ensuring safe operation. However, the high dimensionality of these systems and the rarity of risk events can make the required computations prohibitively expensive. To overcome this challenge, we introduce a graph-based representation and efficient risk quantification techniques tailored for stochastic multi-agent systems. A key technical innovation is a systematic approach to decompose the estimation problem of system-wide safety probabilities into smaller, lower-dimensional sub-systems with sub-safe sets. This decomposition leverages the graph Fourier basis of the agent interaction network, providing a natural and scalable representation. The safety probabilities for these sub-systems are derived as solutions to a set of low-dimensional partial differential equations (PDEs). The proposed decomposition enables existing risk quantification approaches but does so without an exponential increase in computational complexity with respect to the number of agents.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
动态多智能体系统长期风险量化中的正交模态表示
大规模多智能体系统的长期风险量化是保证系统安全运行的关键。然而,这些系统的高维性和风险事件的稀缺性可能会使所需的计算成本过高。为了克服这一挑战,我们引入了为随机多智能体系统量身定制的基于图的表示和有效的风险量化技术。一个关键的技术创新是系统地将全系统安全概率的估计问题分解为具有子安全集的更小、更低维的子系统。这种分解利用了代理交互网络的傅立叶图基础,提供了一种自然的、可扩展的表示。这些子系统的安全概率被导出为一组低维偏微分方程(PDEs)的解。所提出的分解使现有的风险量化方法成为可能,但这样做不会使计算复杂性相对于代理数量呈指数增长。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
IEEE Control Systems Letters
IEEE Control Systems Letters Mathematics-Control and Optimization
CiteScore
4.40
自引率
13.30%
发文量
471
期刊最新文献
Robust and Exponential Stability in Barrier-Certified Systems via Contracting Piecewise Smooth Dynamics PID Control of MIMO Nonlinear Uncertain Systems With Low Relative Degrees Robust NMPC for Uncalibrated IBVS Control of AUVs Contraction Analysis of Continuation Method for Suboptimal Model Predictive Control Spiking Nonlinear Opinion Dynamics (S-NOD) for Agile Decision-Making
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1