Alejandro Simon;Reed Foster;Owen Medeiros;Matteo Castellani;Emma Batson;Karl K. Berggren
{"title":"Characterizing and Modeling the Influence of Geometry on the Performance of Superconducting Nanowire Cryotrons","authors":"Alejandro Simon;Reed Foster;Owen Medeiros;Matteo Castellani;Emma Batson;Karl K. Berggren","doi":"10.1109/TASC.2024.3521894","DOIUrl":null,"url":null,"abstract":"The scaling of superconducting nanowire detectors to larger arrays is often limited by room-temperature-readout cabling. Cryogenic integrated circuits constructed from nanowire cryotrons, or nanocryotrons, can address this limitation by performing signal processing on chip. In this study, we characterize key performance metrics of the nanocryotron to elucidate its potential as a logical element in cryogenic integrated circuits and develop an electro-thermal model to connect material parameters with device performance. We find that the performance of the nanocryotron depends on the device geometry, and trade-offs are associated with optimizing the gain, jitter, and energy dissipation. We demonstrate that nanocryotrons fabricated on niobium nitride can achieve a grey zone less than 210 nA wide for a 5 ns long input pulse corresponding to a maximum achievable gain of 48 dB, an energy dissipation of less than 20 aJ per operation, and a jitter of less than 60 ps.","PeriodicalId":13104,"journal":{"name":"IEEE Transactions on Applied Superconductivity","volume":"35 5","pages":"1-5"},"PeriodicalIF":1.7000,"publicationDate":"2024-12-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Transactions on Applied Superconductivity","FirstCategoryId":"101","ListUrlMain":"https://ieeexplore.ieee.org/document/10814066/","RegionNum":3,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
引用次数: 0
Abstract
The scaling of superconducting nanowire detectors to larger arrays is often limited by room-temperature-readout cabling. Cryogenic integrated circuits constructed from nanowire cryotrons, or nanocryotrons, can address this limitation by performing signal processing on chip. In this study, we characterize key performance metrics of the nanocryotron to elucidate its potential as a logical element in cryogenic integrated circuits and develop an electro-thermal model to connect material parameters with device performance. We find that the performance of the nanocryotron depends on the device geometry, and trade-offs are associated with optimizing the gain, jitter, and energy dissipation. We demonstrate that nanocryotrons fabricated on niobium nitride can achieve a grey zone less than 210 nA wide for a 5 ns long input pulse corresponding to a maximum achievable gain of 48 dB, an energy dissipation of less than 20 aJ per operation, and a jitter of less than 60 ps.
期刊介绍:
IEEE Transactions on Applied Superconductivity (TAS) contains articles on the applications of superconductivity and other relevant technology. Electronic applications include analog and digital circuits employing thin films and active devices such as Josephson junctions. Large scale applications include magnets for power applications such as motors and generators, for magnetic resonance, for accelerators, and cable applications such as power transmission.