{"title":"Performance Improvement of GaN-Based Vertical-Cavity Surface-Emitting Lasers by Using Tapered SiO2-Buried Structure","authors":"Rongbin Xu;Yachao Wang;Mingchao Fang;Yang Mei;Leiying Ying;Daquan Yu;Baoping Zhang","doi":"10.1109/JPHOT.2024.3522498","DOIUrl":null,"url":null,"abstract":"In GaN-based vertical-cavity surface-emitting lasers (VCSELs) with insulator-buried structure, the strong index guiding will introduce higher order modes. In this paper, we present a novel GaN-based VCSEL with a tapered SiO\n<sub>2</sub>\n-buried structure by numerical simulations. Compared to conventional flat aperture VCSELs, tapered aperture VCSELs show the lower threshold current and higher slope efficiency, and can be attributed to the improvement of current distribution within the current injection aperture. Moreover, by adjusting the taper length, the current distribution in current injection aperture can be further changed, enabling single fundamental mode lasing. Additionally, the modulation bandwidth for tapered aperture VCSELs will also increase due to the reduction of parasitic capacitance. This research guides the development of high performance GaN VCSELs capable of achieving single transverse mode and high modulation rates for visible optical communication links and networks.","PeriodicalId":13204,"journal":{"name":"IEEE Photonics Journal","volume":"17 1","pages":"1-5"},"PeriodicalIF":2.1000,"publicationDate":"2024-12-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=10815608","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Photonics Journal","FirstCategoryId":"5","ListUrlMain":"https://ieeexplore.ieee.org/document/10815608/","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
引用次数: 0
Abstract
In GaN-based vertical-cavity surface-emitting lasers (VCSELs) with insulator-buried structure, the strong index guiding will introduce higher order modes. In this paper, we present a novel GaN-based VCSEL with a tapered SiO
2
-buried structure by numerical simulations. Compared to conventional flat aperture VCSELs, tapered aperture VCSELs show the lower threshold current and higher slope efficiency, and can be attributed to the improvement of current distribution within the current injection aperture. Moreover, by adjusting the taper length, the current distribution in current injection aperture can be further changed, enabling single fundamental mode lasing. Additionally, the modulation bandwidth for tapered aperture VCSELs will also increase due to the reduction of parasitic capacitance. This research guides the development of high performance GaN VCSELs capable of achieving single transverse mode and high modulation rates for visible optical communication links and networks.
期刊介绍:
Breakthroughs in the generation of light and in its control and utilization have given rise to the field of Photonics, a rapidly expanding area of science and technology with major technological and economic impact. Photonics integrates quantum electronics and optics to accelerate progress in the generation of novel photon sources and in their utilization in emerging applications at the micro and nano scales spanning from the far-infrared/THz to the x-ray region of the electromagnetic spectrum. IEEE Photonics Journal is an online-only journal dedicated to the rapid disclosure of top-quality peer-reviewed research at the forefront of all areas of photonics. Contributions addressing issues ranging from fundamental understanding to emerging technologies and applications are within the scope of the Journal. The Journal includes topics in: Photon sources from far infrared to X-rays, Photonics materials and engineered photonic structures, Integrated optics and optoelectronic, Ultrafast, attosecond, high field and short wavelength photonics, Biophotonics, including DNA photonics, Nanophotonics, Magnetophotonics, Fundamentals of light propagation and interaction; nonlinear effects, Optical data storage, Fiber optics and optical communications devices, systems, and technologies, Micro Opto Electro Mechanical Systems (MOEMS), Microwave photonics, Optical Sensors.