Performance Improvement of GaN-Based Vertical-Cavity Surface-Emitting Lasers by Using Tapered SiO2-Buried Structure

IF 2.1 4区 工程技术 Q3 ENGINEERING, ELECTRICAL & ELECTRONIC IEEE Photonics Journal Pub Date : 2024-12-25 DOI:10.1109/JPHOT.2024.3522498
Rongbin Xu;Yachao Wang;Mingchao Fang;Yang Mei;Leiying Ying;Daquan Yu;Baoping Zhang
{"title":"Performance Improvement of GaN-Based Vertical-Cavity Surface-Emitting Lasers by Using Tapered SiO2-Buried Structure","authors":"Rongbin Xu;Yachao Wang;Mingchao Fang;Yang Mei;Leiying Ying;Daquan Yu;Baoping Zhang","doi":"10.1109/JPHOT.2024.3522498","DOIUrl":null,"url":null,"abstract":"In GaN-based vertical-cavity surface-emitting lasers (VCSELs) with insulator-buried structure, the strong index guiding will introduce higher order modes. In this paper, we present a novel GaN-based VCSEL with a tapered SiO\n<sub>2</sub>\n-buried structure by numerical simulations. Compared to conventional flat aperture VCSELs, tapered aperture VCSELs show the lower threshold current and higher slope efficiency, and can be attributed to the improvement of current distribution within the current injection aperture. Moreover, by adjusting the taper length, the current distribution in current injection aperture can be further changed, enabling single fundamental mode lasing. Additionally, the modulation bandwidth for tapered aperture VCSELs will also increase due to the reduction of parasitic capacitance. This research guides the development of high performance GaN VCSELs capable of achieving single transverse mode and high modulation rates for visible optical communication links and networks.","PeriodicalId":13204,"journal":{"name":"IEEE Photonics Journal","volume":"17 1","pages":"1-5"},"PeriodicalIF":2.1000,"publicationDate":"2024-12-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=10815608","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Photonics Journal","FirstCategoryId":"5","ListUrlMain":"https://ieeexplore.ieee.org/document/10815608/","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
引用次数: 0

Abstract

In GaN-based vertical-cavity surface-emitting lasers (VCSELs) with insulator-buried structure, the strong index guiding will introduce higher order modes. In this paper, we present a novel GaN-based VCSEL with a tapered SiO 2 -buried structure by numerical simulations. Compared to conventional flat aperture VCSELs, tapered aperture VCSELs show the lower threshold current and higher slope efficiency, and can be attributed to the improvement of current distribution within the current injection aperture. Moreover, by adjusting the taper length, the current distribution in current injection aperture can be further changed, enabling single fundamental mode lasing. Additionally, the modulation bandwidth for tapered aperture VCSELs will also increase due to the reduction of parasitic capacitance. This research guides the development of high performance GaN VCSELs capable of achieving single transverse mode and high modulation rates for visible optical communication links and networks.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
采用锥形sio2埋层结构改善gan基垂直腔面发射激光器性能
在具有绝缘体埋地结构的gan基垂直腔面发射激光器(VCSELs)中,强折射率引导将引入高阶模式。本文通过数值模拟,提出了一种基于氮化镓的具有锥形sio2埋地结构的VCSEL。与传统的平孔径vcsel相比,锥形孔径vcsel具有更低的阈值电流和更高的斜率效率,这可归因于电流注入孔径内电流分布的改善。此外,通过调整锥长,可以进一步改变电流注入孔径内的电流分布,实现单基模激光。此外,由于寄生电容的减小,锥形孔径vcsel的调制带宽也将增加。本研究指导了高性能GaN vcsel的开发,该vcsel能够实现可见光通信链路和网络的单横模和高调制速率。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
IEEE Photonics Journal
IEEE Photonics Journal ENGINEERING, ELECTRICAL & ELECTRONIC-OPTICS
CiteScore
4.50
自引率
8.30%
发文量
489
审稿时长
1.4 months
期刊介绍: Breakthroughs in the generation of light and in its control and utilization have given rise to the field of Photonics, a rapidly expanding area of science and technology with major technological and economic impact. Photonics integrates quantum electronics and optics to accelerate progress in the generation of novel photon sources and in their utilization in emerging applications at the micro and nano scales spanning from the far-infrared/THz to the x-ray region of the electromagnetic spectrum. IEEE Photonics Journal is an online-only journal dedicated to the rapid disclosure of top-quality peer-reviewed research at the forefront of all areas of photonics. Contributions addressing issues ranging from fundamental understanding to emerging technologies and applications are within the scope of the Journal. The Journal includes topics in: Photon sources from far infrared to X-rays, Photonics materials and engineered photonic structures, Integrated optics and optoelectronic, Ultrafast, attosecond, high field and short wavelength photonics, Biophotonics, including DNA photonics, Nanophotonics, Magnetophotonics, Fundamentals of light propagation and interaction; nonlinear effects, Optical data storage, Fiber optics and optical communications devices, systems, and technologies, Micro Opto Electro Mechanical Systems (MOEMS), Microwave photonics, Optical Sensors.
期刊最新文献
Polarization Imaging Descattering Based on Dark Channel Prior Background Light Estimation Spectra Narrowing of a 976 nm High Power External-Cavity Semiconductor Laser Based on a Transmission Grating Performance Improvement of GaN-Based Vertical-Cavity Surface-Emitting Lasers by Using Tapered SiO2-Buried Structure Transponder Aggregator for CDC-ROADM Nodes Supporting S-U Bands and 32/64-WDM Ports Monocular 3D Micro-PIV System Using Computational Imaging
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1