{"title":"PCIe 5.0 Connector Distributed Physical-Based Circuit Model With Loading Resonances for Fast SI Diagnosis and Pathfinding","authors":"Yulin He;Kewei Song;Haonan Wu;Milton Feng","doi":"10.1109/TMTT.2024.3479132","DOIUrl":null,"url":null,"abstract":"We report on the development of a fast signal integrity (SI) diagnosis and pathfinding tool for a Peripheral Component Interconnect Express (PCIe) 5.0 connector based on the distributed physical-based transmission line (dPBTL) circuit model. Frequency-dependent loading resonances due to add-in card (AIC) and baseboard (BB) are identified via HFSS field simulation and analysis. The subcircuit models for ground-cavity (GC) and stub-effect resonances are established and matched well with the field simulated. The integrated dPBTL accurately predicts differential-mode performances and resonant crosstalk up to 64 GHz, speeds up simulation by \n<inline-formula> <tex-math>$5000\\times $ </tex-math></inline-formula>\n, and reduces data storage by \n<inline-formula> <tex-math>$4.84\\times 10^{6}$ </tex-math></inline-formula>\n compared with the traditional full-wave approach. Fast-guided and evaluated by 1-D dPBTL, design modifications reduce loading resonances and broadband dispersion, meeting PCIe 6.0 S-parameter requirements. Informed by dPBTL design, the 3-D pathfinding PCIe 6.0 connector demonstrates a 700% eye height (EH) enlargement and 150% eye width (EW) improvement at 64-GT/s non-return-to-zero (NRZ). Average 14% and 35% are improved in EH and EW for the three eyes at 64-GT/s (32-GBaud) PAM4. Furthermore, eye-openings at 128- and 144-GT/s PAM4 support further development toward PCIe 7.0 applications.","PeriodicalId":13272,"journal":{"name":"IEEE Transactions on Microwave Theory and Techniques","volume":"73 1","pages":"59-74"},"PeriodicalIF":4.1000,"publicationDate":"2024-10-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=10737630","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Transactions on Microwave Theory and Techniques","FirstCategoryId":"5","ListUrlMain":"https://ieeexplore.ieee.org/document/10737630/","RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
引用次数: 0
Abstract
We report on the development of a fast signal integrity (SI) diagnosis and pathfinding tool for a Peripheral Component Interconnect Express (PCIe) 5.0 connector based on the distributed physical-based transmission line (dPBTL) circuit model. Frequency-dependent loading resonances due to add-in card (AIC) and baseboard (BB) are identified via HFSS field simulation and analysis. The subcircuit models for ground-cavity (GC) and stub-effect resonances are established and matched well with the field simulated. The integrated dPBTL accurately predicts differential-mode performances and resonant crosstalk up to 64 GHz, speeds up simulation by
$5000\times $
, and reduces data storage by
$4.84\times 10^{6}$
compared with the traditional full-wave approach. Fast-guided and evaluated by 1-D dPBTL, design modifications reduce loading resonances and broadband dispersion, meeting PCIe 6.0 S-parameter requirements. Informed by dPBTL design, the 3-D pathfinding PCIe 6.0 connector demonstrates a 700% eye height (EH) enlargement and 150% eye width (EW) improvement at 64-GT/s non-return-to-zero (NRZ). Average 14% and 35% are improved in EH and EW for the three eyes at 64-GT/s (32-GBaud) PAM4. Furthermore, eye-openings at 128- and 144-GT/s PAM4 support further development toward PCIe 7.0 applications.
期刊介绍:
The IEEE Transactions on Microwave Theory and Techniques focuses on that part of engineering and theory associated with microwave/millimeter-wave components, devices, circuits, and systems involving the generation, modulation, demodulation, control, transmission, and detection of microwave signals. This includes scientific, technical, and industrial, activities. Microwave theory and techniques relates to electromagnetic waves usually in the frequency region between a few MHz and a THz; other spectral regions and wave types are included within the scope of the Society whenever basic microwave theory and techniques can yield useful results. Generally, this occurs in the theory of wave propagation in structures with dimensions comparable to a wavelength, and in the related techniques for analysis and design.