Pub Date : 2025-02-06DOI: 10.1109/TMTT.2025.3531020
Almudena Suarez
{"title":"2024 Reviewers List","authors":"Almudena Suarez","doi":"10.1109/TMTT.2025.3531020","DOIUrl":"https://doi.org/10.1109/TMTT.2025.3531020","url":null,"abstract":"","PeriodicalId":13272,"journal":{"name":"IEEE Transactions on Microwave Theory and Techniques","volume":"73 2","pages":"692-702"},"PeriodicalIF":4.1,"publicationDate":"2025-02-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=10877712","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143361021","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2025-02-06DOI: 10.1109/TMTT.2025.3537525
{"title":"Editori-in-Chief Call for Applicants","authors":"","doi":"10.1109/TMTT.2025.3537525","DOIUrl":"https://doi.org/10.1109/TMTT.2025.3537525","url":null,"abstract":"","PeriodicalId":13272,"journal":{"name":"IEEE Transactions on Microwave Theory and Techniques","volume":"73 2","pages":"1285-1285"},"PeriodicalIF":4.1,"publicationDate":"2025-02-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=10877701","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143361259","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2025-01-17DOI: 10.1109/TMTT.2025.3530846
{"title":"2024 Index IEEE Transactions on Microwave Theory and Techniques Vol. 72","authors":"","doi":"10.1109/TMTT.2025.3530846","DOIUrl":"https://doi.org/10.1109/TMTT.2025.3530846","url":null,"abstract":"","PeriodicalId":13272,"journal":{"name":"IEEE Transactions on Microwave Theory and Techniques","volume":"72 12","pages":"1-127"},"PeriodicalIF":4.1,"publicationDate":"2025-01-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=10844358","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142993441","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2025-01-07DOI: 10.1109/TMTT.2024.3521177
Yulin He;Kewei Song;Haonan Wu;Milton Feng
Presents corrections to the paper, Corrections to “PCIe 5.0 Connector Distributed Physical-Based Circuit Model With Loading Resonances for Fast SI Diagnosis and Pathfinding”.
{"title":"Corrections to “PCIe 5.0 Connector Distributed Physical-Based Circuit Model With Loading Resonances for Fast SI Diagnosis and Pathfinding”","authors":"Yulin He;Kewei Song;Haonan Wu;Milton Feng","doi":"10.1109/TMTT.2024.3521177","DOIUrl":"https://doi.org/10.1109/TMTT.2024.3521177","url":null,"abstract":"Presents corrections to the paper, Corrections to “PCIe 5.0 Connector Distributed Physical-Based Circuit Model With Loading Resonances for Fast SI Diagnosis and Pathfinding”.","PeriodicalId":13272,"journal":{"name":"IEEE Transactions on Microwave Theory and Techniques","volume":"73 1","pages":"687-687"},"PeriodicalIF":4.1,"publicationDate":"2025-01-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=10832381","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142940825","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2025-01-07DOI: 10.1109/TMTT.2024.3522617
{"title":"Editori-in-Chief Call for Applicants","authors":"","doi":"10.1109/TMTT.2024.3522617","DOIUrl":"https://doi.org/10.1109/TMTT.2024.3522617","url":null,"abstract":"","PeriodicalId":13272,"journal":{"name":"IEEE Transactions on Microwave Theory and Techniques","volume":"73 1","pages":"688-688"},"PeriodicalIF":4.1,"publicationDate":"2025-01-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=10832126","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142940698","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-12-31DOI: 10.1109/TMTT.2024.3518913
Bo Liu;Liyuan Xue;Haijun Fan;Yuan Ding;Muhammad Imran;Tao Wu
In layout-level optimization-oriented power amplifier (PA) design, the need for a good quality initial design and the high computational cost of electromagnetic (EM) simulations are remaining challenges. To address these challenges, a new method called efficient and general Bayesian neural network (BNN)-assisted hybrid optimization algorithm for PA design (E-GASPAD), is proposed. The key innovations of E-GASPAD include the introduction of BNN to model the PA design landscape and a new hybrid optimization algorithm co-working with BNN prediction for efficient PA design optimization. The performance of E-GASPAD is demonstrated by a 27–31 GHz class-AB PA and a 24–31 GHz wideband Doherty PA. Considering around 30 design variables with wide search ranges, the complete set of PA performance specifications, and full-wave EM simulations, layout-level high-performance designs are obtained automatically within a few hundred simulations (i.e., less than 72 h).
{"title":"An Efficient and General Automated Power Amplifier Design Method Based on Surrogate Model Assisted Hybrid Optimization Technique","authors":"Bo Liu;Liyuan Xue;Haijun Fan;Yuan Ding;Muhammad Imran;Tao Wu","doi":"10.1109/TMTT.2024.3518913","DOIUrl":"https://doi.org/10.1109/TMTT.2024.3518913","url":null,"abstract":"In layout-level optimization-oriented power amplifier (PA) design, the need for a good quality initial design and the high computational cost of electromagnetic (EM) simulations are remaining challenges. To address these challenges, a new method called efficient and general Bayesian neural network (BNN)-assisted hybrid optimization algorithm for PA design (E-GASPAD), is proposed. The key innovations of E-GASPAD include the introduction of BNN to model the PA design landscape and a new hybrid optimization algorithm co-working with BNN prediction for efficient PA design optimization. The performance of E-GASPAD is demonstrated by a 27–31 GHz class-AB PA and a 24–31 GHz wideband Doherty PA. Considering around 30 design variables with wide search ranges, the complete set of PA performance specifications, and full-wave EM simulations, layout-level high-performance designs are obtained automatically within a few hundred simulations (i.e., less than 72 h).","PeriodicalId":13272,"journal":{"name":"IEEE Transactions on Microwave Theory and Techniques","volume":"73 2","pages":"926-937"},"PeriodicalIF":4.1,"publicationDate":"2024-12-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143360914","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-12-18DOI: 10.1109/TMTT.2024.3482986
Zijun Xi;Jiaqi Feng;Ke Ye;Dantong Liu;Xuanyu Wang;Xiaoqiang Wang;Xiong Wang
Focused microwave hyperthermia is a noninvasive, non-ionizing, and accurate treatment method that is promising for dealing with many kinds of cancers. Although focused microwave brain hyperthermia (FMBH) has been studied by some previous works, experimental evaluation of this technique in a practical experimental context has not been reported. This article aims to address this issue by developing a preclinical system prototype of FMBH and performing systematic experimental evaluation using several realistic head phantoms. We designed a 1.3-GHz hyperthermia applicator with 17 antennas and built nine different head phantoms based on a real human skull. We perform electromagnetic and thermal simulations and prove that the designed applicator can reliably achieve a good focused field and $45~^{circ }$ C temperature at the tumor. We then realize the FMBH system prototype and experimentally test the performance by applying fabricated 3-D head phantoms. The measured temperature results demonstrate that the FMBH system prototype is able to selectively treat the tumor. We also prove that the temperature at the tumor can be controlled at a constant level for a demanded time period for hyperthermia. This work provides a valuable experimental demonstration of the FMBH technique and is meaningful for its future development and clinical applications.
{"title":"A Preclinical System Prototype and Experimental Validation of Focused Microwave Brain Hyperthermia","authors":"Zijun Xi;Jiaqi Feng;Ke Ye;Dantong Liu;Xuanyu Wang;Xiaoqiang Wang;Xiong Wang","doi":"10.1109/TMTT.2024.3482986","DOIUrl":"https://doi.org/10.1109/TMTT.2024.3482986","url":null,"abstract":"Focused microwave hyperthermia is a noninvasive, non-ionizing, and accurate treatment method that is promising for dealing with many kinds of cancers. Although focused microwave brain hyperthermia (FMBH) has been studied by some previous works, experimental evaluation of this technique in a practical experimental context has not been reported. This article aims to address this issue by developing a preclinical system prototype of FMBH and performing systematic experimental evaluation using several realistic head phantoms. We designed a 1.3-GHz hyperthermia applicator with 17 antennas and built nine different head phantoms based on a real human skull. We perform electromagnetic and thermal simulations and prove that the designed applicator can reliably achieve a good focused field and <inline-formula> <tex-math>$45~^{circ }$ </tex-math></inline-formula>C temperature at the tumor. We then realize the FMBH system prototype and experimentally test the performance by applying fabricated 3-D head phantoms. The measured temperature results demonstrate that the FMBH system prototype is able to selectively treat the tumor. We also prove that the temperature at the tumor can be controlled at a constant level for a demanded time period for hyperthermia. This work provides a valuable experimental demonstration of the FMBH technique and is meaningful for its future development and clinical applications.","PeriodicalId":13272,"journal":{"name":"IEEE Transactions on Microwave Theory and Techniques","volume":"73 2","pages":"1147-1157"},"PeriodicalIF":4.1,"publicationDate":"2024-12-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143361404","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-12-05DOI: 10.1109/TMTT.2024.3501694
{"title":"IEEE Open Access Publishing","authors":"","doi":"10.1109/TMTT.2024.3501694","DOIUrl":"https://doi.org/10.1109/TMTT.2024.3501694","url":null,"abstract":"","PeriodicalId":13272,"journal":{"name":"IEEE Transactions on Microwave Theory and Techniques","volume":"72 12","pages":"7091-7091"},"PeriodicalIF":4.1,"publicationDate":"2024-12-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=10780436","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142777766","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-12-05DOI: 10.1109/TMTT.2024.3501692
{"title":"Connect. Support. Inspire.","authors":"","doi":"10.1109/TMTT.2024.3501692","DOIUrl":"https://doi.org/10.1109/TMTT.2024.3501692","url":null,"abstract":"","PeriodicalId":13272,"journal":{"name":"IEEE Transactions on Microwave Theory and Techniques","volume":"72 12","pages":"7092-7092"},"PeriodicalIF":4.1,"publicationDate":"2024-12-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=10780440","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142777589","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-12-05DOI: 10.1109/TMTT.2024.3500998
{"title":"IEEE Transactions on Microwave Theory and Techniques Publication Information","authors":"","doi":"10.1109/TMTT.2024.3500998","DOIUrl":"https://doi.org/10.1109/TMTT.2024.3500998","url":null,"abstract":"","PeriodicalId":13272,"journal":{"name":"IEEE Transactions on Microwave Theory and Techniques","volume":"72 12","pages":"C2-C2"},"PeriodicalIF":4.1,"publicationDate":"2024-12-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=10780439","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142777862","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}