Bis-3-chloropiperidines: a novel motif for anthelmintic drug design†

IF 3.9 3区 化学 Q2 CHEMISTRY, MULTIDISCIPLINARY RSC Advances Pub Date : 2025-01-10 DOI:10.1039/D4RA05699J
Michael Kirchner, Michael Marner, Tim Kramer, Felix Mühlemeyer, Johanna Eichberg, Markus Oberpaul, Simone Haeberlein and Richard Göttlich
{"title":"Bis-3-chloropiperidines: a novel motif for anthelmintic drug design†","authors":"Michael Kirchner, Michael Marner, Tim Kramer, Felix Mühlemeyer, Johanna Eichberg, Markus Oberpaul, Simone Haeberlein and Richard Göttlich","doi":"10.1039/D4RA05699J","DOIUrl":null,"url":null,"abstract":"<p >Parasites account for huge economic losses by infecting agriculturally important plants and animals. Furthermore, morbidity and death caused by parasites affect a large part of the world population, especially in economically weak regions. Anthelmintic drugs to tackle this challenge remain scarce and their efficiency becomes increasingly endangered by the advent of drug resistance development. In the present study, we assessed the anthelmintic potential of bis-3-chloropiperidines, a family of compounds which have already demonstrated antiproliferative activity against various cell lines. We synthesized and tested the activity of 21 bis-3-chloropiperidine derivatives against two strains of the free-living nematode <em>Caenorhabditis elegans</em> (N2 and DC19) and the parasitic flatworm <em>Schistosoma mansoni</em>. Overall, bifunctional chloropiperidines featuring an aromatic linker performed best against the tested indicator organisms and could be considered for future optimization efforts. Ultimately, out of the 21 analyzed bis-3-chloropiperidines, four derivatives (<strong>2</strong>, <strong>5</strong>, <strong>9</strong> and <strong>11</strong>) reduced vitality parameters against <em>S. mansoni</em> and five the motility of <em>C. elegans</em> (<strong>2</strong>, <strong>4</strong>, <strong>5</strong>, <strong>13</strong>, <strong>21</strong>) while exhibiting no or low cytotoxicity.</p>","PeriodicalId":102,"journal":{"name":"RSC Advances","volume":" 2","pages":" 824-831"},"PeriodicalIF":3.9000,"publicationDate":"2025-01-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://pubs.rsc.org/en/content/articlepdf/2025/ra/d4ra05699j?page=search","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"RSC Advances","FirstCategoryId":"92","ListUrlMain":"https://pubs.rsc.org/en/content/articlelanding/2025/ra/d4ra05699j","RegionNum":3,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

Parasites account for huge economic losses by infecting agriculturally important plants and animals. Furthermore, morbidity and death caused by parasites affect a large part of the world population, especially in economically weak regions. Anthelmintic drugs to tackle this challenge remain scarce and their efficiency becomes increasingly endangered by the advent of drug resistance development. In the present study, we assessed the anthelmintic potential of bis-3-chloropiperidines, a family of compounds which have already demonstrated antiproliferative activity against various cell lines. We synthesized and tested the activity of 21 bis-3-chloropiperidine derivatives against two strains of the free-living nematode Caenorhabditis elegans (N2 and DC19) and the parasitic flatworm Schistosoma mansoni. Overall, bifunctional chloropiperidines featuring an aromatic linker performed best against the tested indicator organisms and could be considered for future optimization efforts. Ultimately, out of the 21 analyzed bis-3-chloropiperidines, four derivatives (2, 5, 9 and 11) reduced vitality parameters against S. mansoni and five the motility of C. elegans (2, 4, 5, 13, 21) while exhibiting no or low cytotoxicity.

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
求助全文
约1分钟内获得全文 去求助
来源期刊
RSC Advances
RSC Advances chemical sciences-
CiteScore
7.50
自引率
2.60%
发文量
3116
审稿时长
1.6 months
期刊介绍: An international, peer-reviewed journal covering all of the chemical sciences, including multidisciplinary and emerging areas. RSC Advances is a gold open access journal allowing researchers free access to research articles, and offering an affordable open access publishing option for authors around the world.
期刊最新文献
5-(3-(N-(Carboxymethyl)naphthalene-2-sulfonamido)phenyl)-1-ethyl-1H-pyrrole-2-carboxylic acid as a Keap1–Nrf2 inhibitor for cerebral ischemia/reperfusion injury treatment Fluorescent nanodiamond scintillators for beam diagnostics of EUV and soft X-ray in photolithographic applications† Electronic and magnetic properties of GeP monolayer modulated by Ge vacancies and doping with Mn and Fe transition metals New quinazolone–sulfonate conjugates with an acetohydrazide linker as potential antimicrobial agents: design, synthesis and molecular docking simulations† Retraction: Antiulcer secondary metabolites from Elaeocarpus grandis, family Elaeocarpaceae, supported by in silico studies
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1