“It is not just the shape, there is more”: students’ learning of enzyme–substrate interactions with immersive Virtual Reality

IF 2.6 2区 教育学 Q1 EDUCATION & EDUCATIONAL RESEARCH Chemistry Education Research and Practice Pub Date : 2024-10-29 DOI:10.1039/D4RP00210E
Henry Matovu, Mihye Won, Roy Tasker, Mauro Mocerino, David Franklin Treagust, Dewi Ayu Kencana Ungu and Chin-Chung Tsai
{"title":"“It is not just the shape, there is more”: students’ learning of enzyme–substrate interactions with immersive Virtual Reality","authors":"Henry Matovu, Mihye Won, Roy Tasker, Mauro Mocerino, David Franklin Treagust, Dewi Ayu Kencana Ungu and Chin-Chung Tsai","doi":"10.1039/D4RP00210E","DOIUrl":null,"url":null,"abstract":"<p >Immersive Virtual Reality (iVR) can help students visualise and explore complex chemical concepts, such as protein enzyme structures and interactions. We designed a set of collaborative iVR-based learning tasks on the interaction between a protein enzyme and its substrate. We investigated how 18 pairs (36 students) in undergraduate chemistry courses changed their understanding of enzyme–substrate interactions through iVR learning tasks. Videos of pre- and post-interviews and student-generated diagrams were analysed. Before iVR, students had abstract models of the structure of a protein enzyme or its interaction with a substrate molecule. Over 90 per cent of the students (33/36) explained enzyme–substrate interactions using simplistic lock-and-key diagrams, exclusively focusing on the shape. Although many students employed key scientific terms like activation energy in their explanations, they were unsure how enzymes lowered activation energy or how catalytic reactions occurred. After iVR, all students discussed the inadequacy of 2D diagrams for representing complex enzyme–substrate interactions. About 90 per cent of students (32/36) used concrete ideas such as electron density and orientation of reactants in the active site to explain the probability of successful interactions between the enzyme and its substrate. Our findings provide evidence of how interactive iVR learning tasks can help students explore complex molecular structures, integrate ideas, and build a concrete understanding of challenging science concepts.</p>","PeriodicalId":69,"journal":{"name":"Chemistry Education Research and Practice","volume":" 1","pages":" 259-270"},"PeriodicalIF":2.6000,"publicationDate":"2024-10-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Chemistry Education Research and Practice","FirstCategoryId":"95","ListUrlMain":"https://pubs.rsc.org/en/content/articlelanding/2025/rp/d4rp00210e","RegionNum":2,"RegionCategory":"教育学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"EDUCATION & EDUCATIONAL RESEARCH","Score":null,"Total":0}
引用次数: 0

Abstract

Immersive Virtual Reality (iVR) can help students visualise and explore complex chemical concepts, such as protein enzyme structures and interactions. We designed a set of collaborative iVR-based learning tasks on the interaction between a protein enzyme and its substrate. We investigated how 18 pairs (36 students) in undergraduate chemistry courses changed their understanding of enzyme–substrate interactions through iVR learning tasks. Videos of pre- and post-interviews and student-generated diagrams were analysed. Before iVR, students had abstract models of the structure of a protein enzyme or its interaction with a substrate molecule. Over 90 per cent of the students (33/36) explained enzyme–substrate interactions using simplistic lock-and-key diagrams, exclusively focusing on the shape. Although many students employed key scientific terms like activation energy in their explanations, they were unsure how enzymes lowered activation energy or how catalytic reactions occurred. After iVR, all students discussed the inadequacy of 2D diagrams for representing complex enzyme–substrate interactions. About 90 per cent of students (32/36) used concrete ideas such as electron density and orientation of reactants in the active site to explain the probability of successful interactions between the enzyme and its substrate. Our findings provide evidence of how interactive iVR learning tasks can help students explore complex molecular structures, integrate ideas, and build a concrete understanding of challenging science concepts.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
求助全文
约1分钟内获得全文 去求助
来源期刊
CiteScore
4.80
自引率
26.70%
发文量
64
审稿时长
6-12 weeks
期刊介绍: The journal for teachers, researchers and other practitioners in chemistry education.
期刊最新文献
Back cover Student conceptualizations and predictions of substitution and elimination reactions: what are they seeing on the page?† Self-regulated learning strategies for success in an online first-year chemistry course ‘Seeing’ chemistry: investigating the contribution of mental imagery strength on students’ thinking in relation to visuospatial problem solving in chemistry† Student's study behaviors as a predictor of performance in general chemistry I
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1