Plurality and identity: on the educational relations between chemistry and physics

IF 2.6 2区 教育学 Q1 EDUCATION & EDUCATIONAL RESEARCH Chemistry Education Research and Practice Pub Date : 2024-10-21 DOI:10.1039/D4RP00288A
Pedro J. Sánchez Gómez and Mauricio Suárez
{"title":"Plurality and identity: on the educational relations between chemistry and physics","authors":"Pedro J. Sánchez Gómez and Mauricio Suárez","doi":"10.1039/D4RP00288A","DOIUrl":null,"url":null,"abstract":"<p >We present an approach to the question of the educational relations between chemistry and physics based on the one hand, on an inferentialist account of scientific representation (Suárez M., (2024), <em>Inference and Representation. A Study in Modelling Science</em>, Chicago and London: The University of Chicago Press). On the other, we have drawn on the notion of science identities, as is currently used in science education. We argue that the representational practices of chemistry are the key competencies for the development of a chemistry identity. We extrapolate this conclusion to physics. The problem of representational plurality, that is, that some objects can be represented divergently in these sciences is thus linked to that of identity plurality, to the question of whether it is possible for a person to simultaneously hold a chemistry and a physics identity. We study the educational implications of this situation within the framework of Lev Vygotsky's sociocultural pedagogy to conclude that the difficulties inherent to representational plurality in chemistry and physics are sociological: university degrees are built around a single, well-defined, identity, thus tending to exclude any form of plurality that compromises this uniformity. As an application of these conclusions, we have studied the question of the introduction of the quantum description of molecules in chemistry education at an undergraduate level. We conclude that this introduction should not be based on the molecular orbitals approach but, instead, on the valence bond method.</p>","PeriodicalId":69,"journal":{"name":"Chemistry Education Research and Practice","volume":" 1","pages":" 53-64"},"PeriodicalIF":2.6000,"publicationDate":"2024-10-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Chemistry Education Research and Practice","FirstCategoryId":"95","ListUrlMain":"https://pubs.rsc.org/en/content/articlelanding/2025/rp/d4rp00288a","RegionNum":2,"RegionCategory":"教育学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"EDUCATION & EDUCATIONAL RESEARCH","Score":null,"Total":0}
引用次数: 0

Abstract

We present an approach to the question of the educational relations between chemistry and physics based on the one hand, on an inferentialist account of scientific representation (Suárez M., (2024), Inference and Representation. A Study in Modelling Science, Chicago and London: The University of Chicago Press). On the other, we have drawn on the notion of science identities, as is currently used in science education. We argue that the representational practices of chemistry are the key competencies for the development of a chemistry identity. We extrapolate this conclusion to physics. The problem of representational plurality, that is, that some objects can be represented divergently in these sciences is thus linked to that of identity plurality, to the question of whether it is possible for a person to simultaneously hold a chemistry and a physics identity. We study the educational implications of this situation within the framework of Lev Vygotsky's sociocultural pedagogy to conclude that the difficulties inherent to representational plurality in chemistry and physics are sociological: university degrees are built around a single, well-defined, identity, thus tending to exclude any form of plurality that compromises this uniformity. As an application of these conclusions, we have studied the question of the introduction of the quantum description of molecules in chemistry education at an undergraduate level. We conclude that this introduction should not be based on the molecular orbitals approach but, instead, on the valence bond method.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
求助全文
约1分钟内获得全文 去求助
来源期刊
CiteScore
4.80
自引率
26.70%
发文量
64
审稿时长
6-12 weeks
期刊介绍: The journal for teachers, researchers and other practitioners in chemistry education.
期刊最新文献
Back cover Student conceptualizations and predictions of substitution and elimination reactions: what are they seeing on the page?† Self-regulated learning strategies for success in an online first-year chemistry course ‘Seeing’ chemistry: investigating the contribution of mental imagery strength on students’ thinking in relation to visuospatial problem solving in chemistry† Student's study behaviors as a predictor of performance in general chemistry I
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1