Rattling atoms induced ultralow thermal conductivity and high thermoelectric performance in monolayer Ca3Sn2S7 chalcogenide perovskite

IF 2.8 3区 物理与天体物理 Q2 PHYSICS, MULTIDISCIPLINARY The European Physical Journal Plus Pub Date : 2025-01-09 DOI:10.1140/epjp/s13360-025-05973-2
Wenfeng Li, Huihui Wang, Zhiyong Liu, Gui Yang
{"title":"Rattling atoms induced ultralow thermal conductivity and high thermoelectric performance in monolayer Ca3Sn2S7 chalcogenide perovskite","authors":"Wenfeng Li,&nbsp;Huihui Wang,&nbsp;Zhiyong Liu,&nbsp;Gui Yang","doi":"10.1140/epjp/s13360-025-05973-2","DOIUrl":null,"url":null,"abstract":"<div><p>In the field of high-performance thermoelectric energy conversion, achieving glass-like ultralow lattice thermal conductivity in crystalline solids with high electrical conductivity remains a significant challenge. We uncovered that the monolayer Ca<sub>3</sub>Sn<sub>2</sub>S<sub>7</sub> chalcogenide perovskite exhibits an extraordinary combination of ultra-low lattice thermal conductivity and high electrical conductivity. The lattice thermal conductivity (<span>\\(\\kappa_{l}\\)</span>) of monolayer Ca<sub>3</sub>Sn<sub>2</sub>S<sub>7</sub> is as low as 1.27Wm⁻<sup>1</sup> K⁻<sup>1</sup> at room temperature and decreases to 0.42Wm⁻<sup>1</sup> K⁻<sup>1</sup> at 900 K. Our in-depth analysis of the phonon spectra, phonon density of states (PDOS), potential energy variations of atoms deviating from equilibrium positions, and studies on atomic displacement parameters (ADPs) attribute this exceptionally low <span>\\(\\kappa_{l}\\)</span> predominantly to the rattling model mechanism. Furthermore, monolayer Ca<sub>3</sub>Sn<sub>2</sub>S<sub>7</sub> is identified as a narrow band direct semiconductor, possessing a bandgap of 0.47 eV and exhibiting high electrical conductivity. The monolayer Ca<sub>3</sub>Sn<sub>2</sub>S<sub>7</sub> reaches its peak <i>ZT</i> values of 7.8 for p-type and 5.2 for n-type at 600 K. The monolayer Ca<sub>3</sub>Sn<sub>2</sub>S<sub>7</sub> is considered a potential material for high-performance thermoelectric materials.</p></div>","PeriodicalId":792,"journal":{"name":"The European Physical Journal Plus","volume":"140 1","pages":""},"PeriodicalIF":2.8000,"publicationDate":"2025-01-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"The European Physical Journal Plus","FirstCategoryId":"4","ListUrlMain":"https://link.springer.com/article/10.1140/epjp/s13360-025-05973-2","RegionNum":3,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"PHYSICS, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

In the field of high-performance thermoelectric energy conversion, achieving glass-like ultralow lattice thermal conductivity in crystalline solids with high electrical conductivity remains a significant challenge. We uncovered that the monolayer Ca3Sn2S7 chalcogenide perovskite exhibits an extraordinary combination of ultra-low lattice thermal conductivity and high electrical conductivity. The lattice thermal conductivity (\(\kappa_{l}\)) of monolayer Ca3Sn2S7 is as low as 1.27Wm⁻1 K⁻1 at room temperature and decreases to 0.42Wm⁻1 K⁻1 at 900 K. Our in-depth analysis of the phonon spectra, phonon density of states (PDOS), potential energy variations of atoms deviating from equilibrium positions, and studies on atomic displacement parameters (ADPs) attribute this exceptionally low \(\kappa_{l}\) predominantly to the rattling model mechanism. Furthermore, monolayer Ca3Sn2S7 is identified as a narrow band direct semiconductor, possessing a bandgap of 0.47 eV and exhibiting high electrical conductivity. The monolayer Ca3Sn2S7 reaches its peak ZT values of 7.8 for p-type and 5.2 for n-type at 600 K. The monolayer Ca3Sn2S7 is considered a potential material for high-performance thermoelectric materials.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
在单层Ca3Sn2S7硫系钙钛矿中,原子振动诱导了超低导热性和高热电性能
在高性能热电能量转换领域,在具有高导电性的结晶固体中实现类似玻璃的超低晶格导热系数仍然是一个重大挑战。我们发现单层Ca3Sn2S7硫系钙钛矿具有超低晶格热导率和高导电性的非凡组合。单层Ca3Sn2S7的晶格热导率(\(\kappa_{l}\))在室温下低至1.27Wm⁻1 K⁻,在900 K时降至0.42Wm⁻1 K⁻。我们对声子光谱、声子态密度(PDOS)、原子偏离平衡位置的势能变化以及原子位移参数(ADPs)的深入分析将这种异常低\(\kappa_{l}\)主要归因于咔嗒模型机制。此外,单层Ca3Sn2S7被鉴定为窄带直接半导体,具有0.47 eV的带隙,具有高导电性。单层Ca3Sn2S7在600 K时ZT峰值为p型7.8,n型5.2。单层Ca3Sn2S7被认为是高性能热电材料的潜在材料。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
The European Physical Journal Plus
The European Physical Journal Plus PHYSICS, MULTIDISCIPLINARY-
CiteScore
5.40
自引率
8.80%
发文量
1150
审稿时长
4-8 weeks
期刊介绍: The aims of this peer-reviewed online journal are to distribute and archive all relevant material required to document, assess, validate and reconstruct in detail the body of knowledge in the physical and related sciences. The scope of EPJ Plus encompasses a broad landscape of fields and disciplines in the physical and related sciences - such as covered by the topical EPJ journals and with the explicit addition of geophysics, astrophysics, general relativity and cosmology, mathematical and quantum physics, classical and fluid mechanics, accelerator and medical physics, as well as physics techniques applied to any other topics, including energy, environment and cultural heritage.
期刊最新文献
Angular momentum dependence of nuclear decay of radon isotopes by emission of \(^{14}\)C nuclei and branching ratio relative to \(\alpha \)-decay Study of structures, electronic and spectral properties of anionic AuMgn− (n = 2–12) clusters Superior monogamy and polygamy relations and estimates of concurrence Charged particle multiplicity fluctuation in \(A-A\) collisions at RHIC and LHC energies using Angantyr model Analysis for 3D thermal conducting micropolar nanofluid via artificial neural network
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1