Ursolic acid attenuates obesity-related metabolic dysfunction via modulation of peroxisome proliferator activated receptor-gamma in male Wistar rats fed with high-carbohydrate high-fat diet

IF 2.5 Q2 MULTIDISCIPLINARY SCIENCES Beni-Suef University Journal of Basic and Applied Sciences Pub Date : 2025-01-06 DOI:10.1186/s43088-024-00565-y
Oluwatosin O. Omodara, Mohammed U. Kawu, Ibrahim G. Bako, Daniel H. Mhya, Theophilus T. Dawus
{"title":"Ursolic acid attenuates obesity-related metabolic dysfunction via modulation of peroxisome proliferator activated receptor-gamma in male Wistar rats fed with high-carbohydrate high-fat diet","authors":"Oluwatosin O. Omodara,&nbsp;Mohammed U. Kawu,&nbsp;Ibrahim G. Bako,&nbsp;Daniel H. Mhya,&nbsp;Theophilus T. Dawus","doi":"10.1186/s43088-024-00565-y","DOIUrl":null,"url":null,"abstract":"<div><h3>Background</h3><p>The risk factors of metabolic syndrome (MS) precedes the development of cardiovascular disease and type 2 diabetes and are largely triggered by high-carbohydrate high-fat diet (HCHFD) and sedentary lifestyle. The development of these risk factors is connected to persistent low-grade inflammation. Though, ursolic acid (UA) has been shown to prevent HCHFD-induced metabolic parameters. The present study aimed to elucidate the molecular mechanisms underlying the preventive effects of dietary UA supplementation on obesity-related metabolic disorders and inflammation in male Wistar rats fed with HCHFD. The animals were randomly divided into 4 groups (n = 5): 1—normal diet (ND) + distilled water (DW); 2—ND + UA; 3—HCHFD + DW; 4—HCHFD + UA. HCHFD was augmented with 20% fructose in drinking water. The animals were fed their respective diets daily for 20 weeks. 250 mg/kg body weight of ursolic acid was administered orally to UA-treated groups for the last 8 weeks. Blood samples were collected and liver and adipose tissues were harvested for biochemical and tissue analysis, respectively.</p><h3>Results</h3><p>BMI and FBG were significantly lowered in the HCHFD + UA-fed animals compared to the HCHFD + DW-fed animals. In the HCHFD + UA-fed animals, HOMA-IR, serum insulin, cholesterol, triglyceride and low-density lipoprotein cholesterol (LDL-C) were significantly decreased while high-density lipoprotein cholesterol (HDL-C) was increased compared to the HCHFD + DW-fed animals. UA significantly decreased serum tumor necrosis factor alpha (TNF-α) and interleukin-6 (IL-6) and increased adiponectin level compared to the HCHFD + DW-fed animals. The messenger ribonucleic acid (mRNA) level of peroxisome proliferator activated receptor-gamma (PPAR-γ) in adipose tissue was significantly upregulated while liver PPAR-γ mRNA level was significantly downregulated in HCHFD + UA-fed animals compared to HCHFD + DW group, respectively. UA restored the architecture of liver parenchyma to near normal.</p><h3>Conclusion</h3><p>Dietary UA supplementation mitigated metabolic dysfunction and inflammation associated with obesity via modulation of liver and adipose tissue PPAR-γ in male Wistar rats fed with HCHFD for 20 weeks.</p></div>","PeriodicalId":481,"journal":{"name":"Beni-Suef University Journal of Basic and Applied Sciences","volume":"14 1","pages":""},"PeriodicalIF":2.5000,"publicationDate":"2025-01-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://bjbas.springeropen.com/counter/pdf/10.1186/s43088-024-00565-y","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Beni-Suef University Journal of Basic and Applied Sciences","FirstCategoryId":"1085","ListUrlMain":"https://link.springer.com/article/10.1186/s43088-024-00565-y","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MULTIDISCIPLINARY SCIENCES","Score":null,"Total":0}
引用次数: 0

Abstract

Background

The risk factors of metabolic syndrome (MS) precedes the development of cardiovascular disease and type 2 diabetes and are largely triggered by high-carbohydrate high-fat diet (HCHFD) and sedentary lifestyle. The development of these risk factors is connected to persistent low-grade inflammation. Though, ursolic acid (UA) has been shown to prevent HCHFD-induced metabolic parameters. The present study aimed to elucidate the molecular mechanisms underlying the preventive effects of dietary UA supplementation on obesity-related metabolic disorders and inflammation in male Wistar rats fed with HCHFD. The animals were randomly divided into 4 groups (n = 5): 1—normal diet (ND) + distilled water (DW); 2—ND + UA; 3—HCHFD + DW; 4—HCHFD + UA. HCHFD was augmented with 20% fructose in drinking water. The animals were fed their respective diets daily for 20 weeks. 250 mg/kg body weight of ursolic acid was administered orally to UA-treated groups for the last 8 weeks. Blood samples were collected and liver and adipose tissues were harvested for biochemical and tissue analysis, respectively.

Results

BMI and FBG were significantly lowered in the HCHFD + UA-fed animals compared to the HCHFD + DW-fed animals. In the HCHFD + UA-fed animals, HOMA-IR, serum insulin, cholesterol, triglyceride and low-density lipoprotein cholesterol (LDL-C) were significantly decreased while high-density lipoprotein cholesterol (HDL-C) was increased compared to the HCHFD + DW-fed animals. UA significantly decreased serum tumor necrosis factor alpha (TNF-α) and interleukin-6 (IL-6) and increased adiponectin level compared to the HCHFD + DW-fed animals. The messenger ribonucleic acid (mRNA) level of peroxisome proliferator activated receptor-gamma (PPAR-γ) in adipose tissue was significantly upregulated while liver PPAR-γ mRNA level was significantly downregulated in HCHFD + UA-fed animals compared to HCHFD + DW group, respectively. UA restored the architecture of liver parenchyma to near normal.

Conclusion

Dietary UA supplementation mitigated metabolic dysfunction and inflammation associated with obesity via modulation of liver and adipose tissue PPAR-γ in male Wistar rats fed with HCHFD for 20 weeks.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
求助全文
约1分钟内获得全文 去求助
来源期刊
CiteScore
2.60
自引率
0.00%
发文量
0
期刊介绍: Beni-Suef University Journal of Basic and Applied Sciences (BJBAS) is a peer-reviewed, open-access journal. This journal welcomes submissions of original research, literature reviews, and editorials in its respected fields of fundamental science, applied science (with a particular focus on the fields of applied nanotechnology and biotechnology), medical sciences, pharmaceutical sciences, and engineering. The multidisciplinary aspects of the journal encourage global collaboration between researchers in multiple fields and provide cross-disciplinary dissemination of findings.
期刊最新文献
The influence of adding B. subtilis bacteria on the mechanical and chemical properties of cement mortar Ursolic acid attenuates obesity-related metabolic dysfunction via modulation of peroxisome proliferator activated receptor-gamma in male Wistar rats fed with high-carbohydrate high-fat diet Ameliorative effect of curcuminoids in liver fibrosis rat model via regulating GIPC1 gene and modulating MMP-8/TIMP-3 balance mediated by miR-483-5p Comparative study of anti-staphylococcal efficacy: traditional homeopathic dilutions vs. nano-enhanced Rhus Tox formulations Chamomile flowers extract protects against thinner inhalation-induced lung toxicity via attenuating cytochrome P2E1 activity, surfactant deficiency, and alveolar structural injury in rats
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1