The effects of novel point mutations in the BRCA1 protein structure of breast cancer patients with breast or ovarian familial cancer history: an in-silico study
Mohsen Nabi-Afjadi, Mohammad Yaghoubzad Maleki, Fatemeh Sadat Seyedi Asl, Mohammad Yazdanpour, Fatemehsadat Ataei Kachouei, Payam Baziyar
{"title":"The effects of novel point mutations in the BRCA1 protein structure of breast cancer patients with breast or ovarian familial cancer history: an in-silico study","authors":"Mohsen Nabi-Afjadi, Mohammad Yaghoubzad Maleki, Fatemeh Sadat Seyedi Asl, Mohammad Yazdanpour, Fatemehsadat Ataei Kachouei, Payam Baziyar","doi":"10.1140/epjp/s13360-024-05961-y","DOIUrl":null,"url":null,"abstract":"<div><p>Pathogenic mutations in the BRCA1 gene are among the most significant genetic risk factors for breast cancer. Identifying these mutations is crucial for advancing prevention and treatment strategies. A substantial portion of genetic variants in BRCA1 remains unclassified due to limited functional evidence. Mutations in the Interesting New Gene (RING) and BRCA1 C-terminal (BRCT) domains are particularly associated with increased cancer risk. This study aims to identify and analyze novel mutations in these domains. Seven newly identified mutations—Q12H, K20D, and E84G in the RING domain, and Y1666D, T1675S, T1681A, and L1764Q in the BRCT domain—were evaluated using molecular dynamics simulations. The simulations revealed significant changes in the protein stability, flexibility, compactness, hydrogen bonding, and solvent-accessible surface area, with BRCT domain mutations showing more pronounced effects. This study represents the first comprehensive computational analysis to assess the structural and functional impact of these novel mutations and predict stabilization possibilities. By elucidating the conformational dynamics of BRCA1 mutations, our findings provide a foundation for experimental validation and the development of targeted therapeutic interventions.</p></div>","PeriodicalId":792,"journal":{"name":"The European Physical Journal Plus","volume":"140 1","pages":""},"PeriodicalIF":2.8000,"publicationDate":"2025-01-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"The European Physical Journal Plus","FirstCategoryId":"4","ListUrlMain":"https://link.springer.com/article/10.1140/epjp/s13360-024-05961-y","RegionNum":3,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"PHYSICS, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
Pathogenic mutations in the BRCA1 gene are among the most significant genetic risk factors for breast cancer. Identifying these mutations is crucial for advancing prevention and treatment strategies. A substantial portion of genetic variants in BRCA1 remains unclassified due to limited functional evidence. Mutations in the Interesting New Gene (RING) and BRCA1 C-terminal (BRCT) domains are particularly associated with increased cancer risk. This study aims to identify and analyze novel mutations in these domains. Seven newly identified mutations—Q12H, K20D, and E84G in the RING domain, and Y1666D, T1675S, T1681A, and L1764Q in the BRCT domain—were evaluated using molecular dynamics simulations. The simulations revealed significant changes in the protein stability, flexibility, compactness, hydrogen bonding, and solvent-accessible surface area, with BRCT domain mutations showing more pronounced effects. This study represents the first comprehensive computational analysis to assess the structural and functional impact of these novel mutations and predict stabilization possibilities. By elucidating the conformational dynamics of BRCA1 mutations, our findings provide a foundation for experimental validation and the development of targeted therapeutic interventions.
期刊介绍:
The aims of this peer-reviewed online journal are to distribute and archive all relevant material required to document, assess, validate and reconstruct in detail the body of knowledge in the physical and related sciences.
The scope of EPJ Plus encompasses a broad landscape of fields and disciplines in the physical and related sciences - such as covered by the topical EPJ journals and with the explicit addition of geophysics, astrophysics, general relativity and cosmology, mathematical and quantum physics, classical and fluid mechanics, accelerator and medical physics, as well as physics techniques applied to any other topics, including energy, environment and cultural heritage.