The fork device: a test for estimating the memory creep of wood under load during moisture variation

IF 3.1 2区 农林科学 Q1 FORESTRY Wood Science and Technology Pub Date : 2025-01-08 DOI:10.1007/s00226-024-01606-6
Antoine Stéphan, Patrick Perré, Clément L’Hostis, Romain Rémond
{"title":"The fork device: a test for estimating the memory creep of wood under load during moisture variation","authors":"Antoine Stéphan,&nbsp;Patrick Perré,&nbsp;Clément L’Hostis,&nbsp;Romain Rémond","doi":"10.1007/s00226-024-01606-6","DOIUrl":null,"url":null,"abstract":"<div><p>When a loaded piece of wood is exposed to variable climatic conditions, the stress state depends on both the stress and moisture content change history due to the memory creep. To explore this complex time-dependent interaction, a new experimental device has been developed. Called the \"fork\" device, this simple setup allows the evolution of the memory creep of twin wood samples to be determined continuously under different loads. In this work, this device has been used at low temperature (i.e. 30 <span>\\(^{\\circ }\\)</span>C) and with six different humidity cycles to focus on the mechanosorptive part of the memory creep. The test was performed with thin quartersawn and flatsawn samples of beech and oak originally at green state. periods were chosen to obtain a moisture content quickly close to the equilibrium moisture content for each plateau. With negligible moisture gradient, the dynamics of mechanosorption was measured and compared with moisture variations, species and load direction. The results highlight an increase in mechanosorptive strain with cumulative moisture content variations with an asymptotic behavior towards a limit. For oak and beech, a common compliance can be found for each grain direction.</p></div>","PeriodicalId":810,"journal":{"name":"Wood Science and Technology","volume":"59 1","pages":""},"PeriodicalIF":3.1000,"publicationDate":"2025-01-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Wood Science and Technology","FirstCategoryId":"88","ListUrlMain":"https://link.springer.com/article/10.1007/s00226-024-01606-6","RegionNum":2,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"FORESTRY","Score":null,"Total":0}
引用次数: 0

Abstract

When a loaded piece of wood is exposed to variable climatic conditions, the stress state depends on both the stress and moisture content change history due to the memory creep. To explore this complex time-dependent interaction, a new experimental device has been developed. Called the "fork" device, this simple setup allows the evolution of the memory creep of twin wood samples to be determined continuously under different loads. In this work, this device has been used at low temperature (i.e. 30 \(^{\circ }\)C) and with six different humidity cycles to focus on the mechanosorptive part of the memory creep. The test was performed with thin quartersawn and flatsawn samples of beech and oak originally at green state. periods were chosen to obtain a moisture content quickly close to the equilibrium moisture content for each plateau. With negligible moisture gradient, the dynamics of mechanosorption was measured and compared with moisture variations, species and load direction. The results highlight an increase in mechanosorptive strain with cumulative moisture content variations with an asymptotic behavior towards a limit. For oak and beech, a common compliance can be found for each grain direction.

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
求助全文
约1分钟内获得全文 去求助
来源期刊
Wood Science and Technology
Wood Science and Technology 工程技术-材料科学:纸与木材
CiteScore
5.90
自引率
5.90%
发文量
75
审稿时长
3 months
期刊介绍: Wood Science and Technology publishes original scientific research results and review papers covering the entire field of wood material science, wood components and wood based products. Subjects are wood biology and wood quality, wood physics and physical technologies, wood chemistry and chemical technologies. Latest advances in areas such as cell wall and wood formation; structural and chemical composition of wood and wood composites and their property relations; physical, mechanical and chemical characterization and relevant methodological developments, and microbiological degradation of wood and wood based products are reported. Topics related to wood technology include machining, gluing, and finishing, composite technology, wood modification, wood mechanics, creep and rheology, and the conversion of wood into pulp and biorefinery products.
期刊最新文献
Morphological analysis of inosculated connections in weeping figs: insights on density, geometry, fiber structures, and compositional variations Fire performance of wood–steel hybrid elements: finite element analysis and experimental validation The fork device: a test for estimating the memory creep of wood under load during moisture variation Versatile cross-linking strategy using water-soluble silane and dialdehyde for consolidation and dehydration of waterlogged archaeological wood Lignin hygroexpansion in compression and opposite wood - a molecular dynamics study
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1