Advanced bench design and technical challenges in open pit mining: a comprehensive review of stability and productivity

IF 1.827 Q2 Earth and Planetary Sciences Arabian Journal of Geosciences Pub Date : 2025-01-09 DOI:10.1007/s12517-024-12157-2
Geleta Warkisa Deressa, Bhanwar Singh Choudhary, Nagessa Zerihun Jilo
{"title":"Advanced bench design and technical challenges in open pit mining: a comprehensive review of stability and productivity","authors":"Geleta Warkisa Deressa,&nbsp;Bhanwar Singh Choudhary,&nbsp;Nagessa Zerihun Jilo","doi":"10.1007/s12517-024-12157-2","DOIUrl":null,"url":null,"abstract":"<div><p>This study provides a detailed review of the open pit mine planning process, focusing on the critical parameters that influence the stability, safety, and efficiency of mining operations. Historically, the importance of integrated mine planning and geomechanical understanding in bench design has been underestimated, leading to operational challenges. The primary objective of this review is to emphasize the significance of effective mine planning and design, highlighting key factors such as rock mass properties, bench geometry, stability considerations, blast design, and other operational elements that directly impact efficiency and safety. Optimizing bench design requires a careful balance of economic, geomechanical, and operational factors, including bench height, slope angle, blasting design, and equipment considerations, to enhance safety and productivity in open pit mining. Numerical modelling is crucial for simulating interactions between rock behavior, bench design, and mining processes, providing insights into stress distribution, material displacement, and potential failure mechanisms. Incorporating machine learning techniques in open pit mine planning introduces innovative solutions for design optimization. In conclusion, the paper proposes strategies for improving stability and productivity through integrated blasting protocols, advanced monitoring technologies, and machine learning for design optimization. Future research should focus on enhancing safety and productivity by refining modelling techniques and deepening the understanding of mine planning and design for sustainable mining operations.</p></div>","PeriodicalId":476,"journal":{"name":"Arabian Journal of Geosciences","volume":"18 1","pages":""},"PeriodicalIF":1.8270,"publicationDate":"2025-01-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Arabian Journal of Geosciences","FirstCategoryId":"1085","ListUrlMain":"https://link.springer.com/article/10.1007/s12517-024-12157-2","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"Earth and Planetary Sciences","Score":null,"Total":0}
引用次数: 0

Abstract

This study provides a detailed review of the open pit mine planning process, focusing on the critical parameters that influence the stability, safety, and efficiency of mining operations. Historically, the importance of integrated mine planning and geomechanical understanding in bench design has been underestimated, leading to operational challenges. The primary objective of this review is to emphasize the significance of effective mine planning and design, highlighting key factors such as rock mass properties, bench geometry, stability considerations, blast design, and other operational elements that directly impact efficiency and safety. Optimizing bench design requires a careful balance of economic, geomechanical, and operational factors, including bench height, slope angle, blasting design, and equipment considerations, to enhance safety and productivity in open pit mining. Numerical modelling is crucial for simulating interactions between rock behavior, bench design, and mining processes, providing insights into stress distribution, material displacement, and potential failure mechanisms. Incorporating machine learning techniques in open pit mine planning introduces innovative solutions for design optimization. In conclusion, the paper proposes strategies for improving stability and productivity through integrated blasting protocols, advanced monitoring technologies, and machine learning for design optimization. Future research should focus on enhancing safety and productivity by refining modelling techniques and deepening the understanding of mine planning and design for sustainable mining operations.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
求助全文
约1分钟内获得全文 去求助
来源期刊
Arabian Journal of Geosciences
Arabian Journal of Geosciences GEOSCIENCES, MULTIDISCIPLINARY-
自引率
0.00%
发文量
1587
审稿时长
6.7 months
期刊介绍: The Arabian Journal of Geosciences is the official journal of the Saudi Society for Geosciences and publishes peer-reviewed original and review articles on the entire range of Earth Science themes, focused on, but not limited to, those that have regional significance to the Middle East and the Euro-Mediterranean Zone. Key topics therefore include; geology, hydrogeology, earth system science, petroleum sciences, geophysics, seismology and crustal structures, tectonics, sedimentology, palaeontology, metamorphic and igneous petrology, natural hazards, environmental sciences and sustainable development, geoarchaeology, geomorphology, paleo-environment studies, oceanography, atmospheric sciences, GIS and remote sensing, geodesy, mineralogy, volcanology, geochemistry and metallogenesis.
期刊最新文献
The study of water cut in the AB reservoir unit of Zubair formation at South Rumaila oilfield, Southern Iraq using petrophysics, geostatistics, and machine learning techniques Crop type discrimination through low cost proximal RGB imaging and multivariate analysis Numerical analysis for failure and deformation assessment of the waterway tunnel, Wabe Hydropower Project, Central Ethiopia Spatial distribution of rainfall in Nigeria Advanced bench design and technical challenges in open pit mining: a comprehensive review of stability and productivity
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1