Early Permian post-collisional magmatism induced by extensive removal of the Variscan lithospheric mantle

IF 3.5 2区 地球科学 Q1 GEOCHEMISTRY & GEOPHYSICS Contributions to Mineralogy and Petrology Pub Date : 2025-01-08 DOI:10.1007/s00410-024-02196-z
Andrea Boscaini, Joshua H. F. L. Davies, Morgann G. Perrot, Raffaele Sassi, Claudio Mazzoli, Angelo De Min, Corrado Morelli, Evelyn Kustatscher, Thomas Blanchet-Gavouyère, Andrea Marzoli
{"title":"Early Permian post-collisional magmatism induced by extensive removal of the Variscan lithospheric mantle","authors":"Andrea Boscaini,&nbsp;Joshua H. F. L. Davies,&nbsp;Morgann G. Perrot,&nbsp;Raffaele Sassi,&nbsp;Claudio Mazzoli,&nbsp;Angelo De Min,&nbsp;Corrado Morelli,&nbsp;Evelyn Kustatscher,&nbsp;Thomas Blanchet-Gavouyère,&nbsp;Andrea Marzoli","doi":"10.1007/s00410-024-02196-z","DOIUrl":null,"url":null,"abstract":"<div><p>The tectonic re-equilibration after the Variscan orogeny coincided with widespread early Permian post-collisional magmatism in southern Europe. A full understanding of the origin of this magmatism in the South Variscan realm and its relationship to major tectonic events such as subduction, continental collision, rifting or lithospheric foundering hinges on high-precision geochronological data of the magmatic products. Here, we present new high-precision zircon U–Pb geochronological data obtained by chemical abrasion isotope dilution thermal ionization mass spectrometry (CA-ID-TIMS) for the early Permian Athesian Magmatic District (AMD) in NE Italy. Our analysed zircons from felsic intrusive and volcanic rocks give ages spanning from ca. 281.8 to 277.2 Ma, suggesting that the lifetime of the AMD was significantly shorter than previously reported. Our data, when combined with recent high-precision ages from other South Variscan magmatic systems suggest that the Cisuralian (early Permian) post-collisional magmatism in the Southalpine domain occurred over more than 8 m.y. with the magmatic centres migrating from the western to the eastern Southern Alps. Geochemical and radiogenic isotope modelling of published data for magmatic rocks in the Southern Alps and the Corsica-Sardinia batholith suggest a subduction-enriched mantle source for the South Variscan post-collisional magmatism, with melting occurring under a relatively thin lithosphere at depths of ca. 60 km. Our results point to a significant post-orogenic delamination of the thick lithospheric mantle formed during the Variscan orogeny. In this scenario, the migration of the post-collisional magmatism within the Cisuralian district may be due to the lateral migration of the lithospheric foundering.</p></div>","PeriodicalId":526,"journal":{"name":"Contributions to Mineralogy and Petrology","volume":"180 2","pages":""},"PeriodicalIF":3.5000,"publicationDate":"2025-01-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Contributions to Mineralogy and Petrology","FirstCategoryId":"89","ListUrlMain":"https://link.springer.com/article/10.1007/s00410-024-02196-z","RegionNum":2,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"GEOCHEMISTRY & GEOPHYSICS","Score":null,"Total":0}
引用次数: 0

Abstract

The tectonic re-equilibration after the Variscan orogeny coincided with widespread early Permian post-collisional magmatism in southern Europe. A full understanding of the origin of this magmatism in the South Variscan realm and its relationship to major tectonic events such as subduction, continental collision, rifting or lithospheric foundering hinges on high-precision geochronological data of the magmatic products. Here, we present new high-precision zircon U–Pb geochronological data obtained by chemical abrasion isotope dilution thermal ionization mass spectrometry (CA-ID-TIMS) for the early Permian Athesian Magmatic District (AMD) in NE Italy. Our analysed zircons from felsic intrusive and volcanic rocks give ages spanning from ca. 281.8 to 277.2 Ma, suggesting that the lifetime of the AMD was significantly shorter than previously reported. Our data, when combined with recent high-precision ages from other South Variscan magmatic systems suggest that the Cisuralian (early Permian) post-collisional magmatism in the Southalpine domain occurred over more than 8 m.y. with the magmatic centres migrating from the western to the eastern Southern Alps. Geochemical and radiogenic isotope modelling of published data for magmatic rocks in the Southern Alps and the Corsica-Sardinia batholith suggest a subduction-enriched mantle source for the South Variscan post-collisional magmatism, with melting occurring under a relatively thin lithosphere at depths of ca. 60 km. Our results point to a significant post-orogenic delamination of the thick lithospheric mantle formed during the Variscan orogeny. In this scenario, the migration of the post-collisional magmatism within the Cisuralian district may be due to the lateral migration of the lithospheric foundering.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
求助全文
约1分钟内获得全文 去求助
来源期刊
Contributions to Mineralogy and Petrology
Contributions to Mineralogy and Petrology 地学-地球化学与地球物理
CiteScore
6.50
自引率
5.70%
发文量
94
审稿时长
1.7 months
期刊介绍: Contributions to Mineralogy and Petrology is an international journal that accepts high quality research papers in the fields of igneous and metamorphic petrology, geochemistry and mineralogy. Topics of interest include: major element, trace element and isotope geochemistry, geochronology, experimental petrology, igneous and metamorphic petrology, mineralogy, major and trace element mineral chemistry and thermodynamic modeling of petrologic and geochemical processes.
期刊最新文献
Quantifying the partial melting of Himalayan Metamorphic core in Eastern Himalaya: implications for crustal rheology Early Permian post-collisional magmatism induced by extensive removal of the Variscan lithospheric mantle Water solubility of olivine under redox-controlled deep upper mantle conditions: effects of pressure, temperature and coexisting fluids and implications Reconstructing mantle–crust boundary magmatism through Cimmerian orogenic events: evidence from deep crustal cumulates in northeastern Pamir Monazite petrochronology dates Jurassic and Cretaceous cycles of prograde and retrograde metamorphism in the Funeral Mountains, California
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1