Therapeutic Potential of Microneedle Assisted Drug Delivery for Wound Healing: Current State of the Art, Challenges, and Future Perspective

IF 3.4 4区 医学 Q2 PHARMACOLOGY & PHARMACY AAPS PharmSciTech Pub Date : 2025-01-08 DOI:10.1208/s12249-024-03017-z
Devesh Kumar, Shubham Pandey, Jailani Shiekmydeen, Mohit Kumar, Shruti Chopra, Amit Bhatia
{"title":"Therapeutic Potential of Microneedle Assisted Drug Delivery for Wound Healing: Current State of the Art, Challenges, and Future Perspective","authors":"Devesh Kumar,&nbsp;Shubham Pandey,&nbsp;Jailani Shiekmydeen,&nbsp;Mohit Kumar,&nbsp;Shruti Chopra,&nbsp;Amit Bhatia","doi":"10.1208/s12249-024-03017-z","DOIUrl":null,"url":null,"abstract":"<div><p>Microneedles (MNs) appear as a transformative and minimally invasive platform for transdermal drug delivery, representing a highly promising strategy in wound healing therapeutics. This technology, entailing the fabrication of micron-scale needle arrays, enables the targeted and efficient delivery of bioactive agents into the epidermal and dermal layers without inducing significant pain or discomfort. The precise penetration of MNs facilitates localized and sustained drug release, which significantly enhances tissue regeneration and accelerates wound closure. Furthermore, MNs can be engineered to encapsulate essential bioactive compounds, including antimicrobial agents, growth factors, and stem cells, which are critical for modulating the wound healing cascade and mitigating infection risk. The biodegradable nature of these MNs obviates the need for device removal, rendering them particularly advantageous in the management of chronic wounds such as diabetic ulcers and pressure sores. The integration of nanotechnology within MNs further augments their drug-loading capacity, stability, and controlled-release kinetics, offering a sophisticated therapeutic modality. This cutting-edge approach has the potential to redefine wound care by optimizing therapeutic efficacy, reducing adverse effects, and enhancing patient adherence. As MN technology advances, its application in wound healing exemplifies a dynamic frontier within biomedical engineering and regenerative medicine.</p><h3>Graphical Abstract</h3>\n<div><figure><div><div><picture><source><img></source></picture></div></div></figure></div></div>","PeriodicalId":6925,"journal":{"name":"AAPS PharmSciTech","volume":"26 1","pages":""},"PeriodicalIF":3.4000,"publicationDate":"2025-01-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"AAPS PharmSciTech","FirstCategoryId":"3","ListUrlMain":"https://link.springer.com/article/10.1208/s12249-024-03017-z","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"PHARMACOLOGY & PHARMACY","Score":null,"Total":0}
引用次数: 0

Abstract

Microneedles (MNs) appear as a transformative and minimally invasive platform for transdermal drug delivery, representing a highly promising strategy in wound healing therapeutics. This technology, entailing the fabrication of micron-scale needle arrays, enables the targeted and efficient delivery of bioactive agents into the epidermal and dermal layers without inducing significant pain or discomfort. The precise penetration of MNs facilitates localized and sustained drug release, which significantly enhances tissue regeneration and accelerates wound closure. Furthermore, MNs can be engineered to encapsulate essential bioactive compounds, including antimicrobial agents, growth factors, and stem cells, which are critical for modulating the wound healing cascade and mitigating infection risk. The biodegradable nature of these MNs obviates the need for device removal, rendering them particularly advantageous in the management of chronic wounds such as diabetic ulcers and pressure sores. The integration of nanotechnology within MNs further augments their drug-loading capacity, stability, and controlled-release kinetics, offering a sophisticated therapeutic modality. This cutting-edge approach has the potential to redefine wound care by optimizing therapeutic efficacy, reducing adverse effects, and enhancing patient adherence. As MN technology advances, its application in wound healing exemplifies a dynamic frontier within biomedical engineering and regenerative medicine.

Graphical Abstract

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
微针辅助给药治疗伤口愈合的潜力:现状、挑战和未来展望
微针(MNs)作为一种革命性的、微创的经皮给药平台,在伤口愈合治疗中表现出非常有前途的策略。这项技术需要制造微米尺度的针阵列,能够将生物活性药物靶向和有效地输送到表皮和真皮层,而不会引起明显的疼痛或不适。MNs的精确渗透有助于局部和持续的药物释放,从而显著增强组织再生和加速伤口愈合。此外,纳米颗粒可以被设计成包封必需的生物活性化合物,包括抗菌剂、生长因子和干细胞,这些对调节伤口愈合级联和降低感染风险至关重要。这些MNs的可生物降解性质避免了移除设备的需要,使它们在慢性伤口的治疗中特别有利,如糖尿病溃疡和压疮。纳米技术在纳米颗粒中的整合进一步增强了它们的载药能力、稳定性和控释动力学,提供了一种复杂的治疗方式。这种尖端的方法有可能通过优化治疗效果、减少不良反应和提高患者依从性来重新定义伤口护理。随着MN技术的进步,其在伤口愈合中的应用体现了生物医学工程和再生医学的动态前沿。图形抽象
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
AAPS PharmSciTech
AAPS PharmSciTech 医学-药学
CiteScore
6.80
自引率
3.00%
发文量
264
审稿时长
2.4 months
期刊介绍: AAPS PharmSciTech is a peer-reviewed, online-only journal committed to serving those pharmaceutical scientists and engineers interested in the research, development, and evaluation of pharmaceutical dosage forms and delivery systems, including drugs derived from biotechnology and the manufacturing science pertaining to the commercialization of such dosage forms. Because of its electronic nature, AAPS PharmSciTech aspires to utilize evolving electronic technology to enable faster and diverse mechanisms of information delivery to its readership. Submission of uninvited expert reviews and research articles are welcomed.
期刊最新文献
Biosimilars: A Critical Review of Development, Regulatory Landscape, and Clinical Implications. Valsartan Loaded Solid Self-Nanoemulsifying Delivery System to Enhance Oral Absorption and Bioavailability. Development and In-Vitro Tuning of Piperine Containing Solid Lipid Microparticles for the Treatment of Rheumatoid Arthritis Human Plasma-Derived Exosomes: A Promising Carrier System for the Delivery of Hydroxyurea to Combat Breast Cancer Design and Process Considerations for Preparation of Modified Release Ivermectin and Praziquantel Tablets by Wet Granulation
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1