Novel Methods Developed in Bioequivalence Assays: Patent Review

IF 3.4 4区 医学 Q2 PHARMACOLOGY & PHARMACY AAPS PharmSciTech Pub Date : 2025-03-26 DOI:10.1208/s12249-025-03079-7
Brian Sebastian Correa Barrera, Izabel Almeida Alves, Diana Marcela Aragón
{"title":"Novel Methods Developed in Bioequivalence Assays: Patent Review","authors":"Brian Sebastian Correa Barrera,&nbsp;Izabel Almeida Alves,&nbsp;Diana Marcela Aragón","doi":"10.1208/s12249-025-03079-7","DOIUrl":null,"url":null,"abstract":"<div><p>This study examines advancements in bioequivalence (BE) assessment methods, with a focus on <i>in vitro</i>-<i>in vivo</i> correlation (IVIVC) and dissolution testing technologies. A systematic patent search was conducted via Espacenet, following PRISMA criteria and the study objectives, revealing 216 relevant patents, of which 28 were selected based on their contributions to novel BE methodologies. Analysis indicates a rapid increase in patent filings from 2021 to 2022, with a significant concentration of contributions from China. Key innovations include enhancements in dissolution testing apparatus, application of physiologically based pharmacokinetic (PBPK) modeling for IVIVC, and advanced statistical approaches for BE assessment. In dissolution testing, ƒ1 and ƒ2 factors remain essential metrics for assessing similarity, especially in solid oral dosage forms. These innovations enhance the efficiency (streamline) of BE evaluations, optimizing the biowaiver process and minimizing the need for extensive clinical trials while ensuring greater precision and reliability. The dissolution test, particularly when combined with PBPK models, allows for predictive evaluation of formulation changes and population-specific responses, fostering efficiency in drug development. Overall, these novel BE assessment approaches provide a framework for regulatory compliance, cost-effective production, and assurance of therapeutic equivalence in generic formulations. While they may not always be implemented in practice, they contribute significantly to innovation in the field, driving advancements in bioequivalence evaluation. This review highlights the evolving landscape of BE and IVIVC methodologies and underscores the importance of incorporating innovative testing approaches to advance pharmaceutical science and regulatory practices.</p><h3>Graphical Abstract</h3>\n<div><figure><div><div><picture><source><img></source></picture></div></div></figure></div></div>","PeriodicalId":6925,"journal":{"name":"AAPS PharmSciTech","volume":"26 4","pages":""},"PeriodicalIF":3.4000,"publicationDate":"2025-03-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"AAPS PharmSciTech","FirstCategoryId":"3","ListUrlMain":"https://link.springer.com/article/10.1208/s12249-025-03079-7","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"PHARMACOLOGY & PHARMACY","Score":null,"Total":0}
引用次数: 0

Abstract

This study examines advancements in bioequivalence (BE) assessment methods, with a focus on in vitro-in vivo correlation (IVIVC) and dissolution testing technologies. A systematic patent search was conducted via Espacenet, following PRISMA criteria and the study objectives, revealing 216 relevant patents, of which 28 were selected based on their contributions to novel BE methodologies. Analysis indicates a rapid increase in patent filings from 2021 to 2022, with a significant concentration of contributions from China. Key innovations include enhancements in dissolution testing apparatus, application of physiologically based pharmacokinetic (PBPK) modeling for IVIVC, and advanced statistical approaches for BE assessment. In dissolution testing, ƒ1 and ƒ2 factors remain essential metrics for assessing similarity, especially in solid oral dosage forms. These innovations enhance the efficiency (streamline) of BE evaluations, optimizing the biowaiver process and minimizing the need for extensive clinical trials while ensuring greater precision and reliability. The dissolution test, particularly when combined with PBPK models, allows for predictive evaluation of formulation changes and population-specific responses, fostering efficiency in drug development. Overall, these novel BE assessment approaches provide a framework for regulatory compliance, cost-effective production, and assurance of therapeutic equivalence in generic formulations. While they may not always be implemented in practice, they contribute significantly to innovation in the field, driving advancements in bioequivalence evaluation. This review highlights the evolving landscape of BE and IVIVC methodologies and underscores the importance of incorporating innovative testing approaches to advance pharmaceutical science and regulatory practices.

Graphical Abstract

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
求助全文
约1分钟内获得全文 去求助
相关文献
In Memoriam / In Memoriam
IF 1 4区 农林科学Canadian Journal of Animal SciencePub Date : 2020-02-24 DOI: 10.1139/cgj-2020-0096
J. Germida, Suzanne Kettley
IN MEMORIAM / IN MEMORIAM
IF 1.2 4区 农林科学Canadian Journal of Plant SciencePub Date : 2020-02-19 DOI: 10.1139/cjce-2020-0088
J. Germida, Suzanne Kettley
来源期刊
AAPS PharmSciTech
AAPS PharmSciTech 医学-药学
CiteScore
6.80
自引率
3.00%
发文量
264
审稿时长
2.4 months
期刊介绍: AAPS PharmSciTech is a peer-reviewed, online-only journal committed to serving those pharmaceutical scientists and engineers interested in the research, development, and evaluation of pharmaceutical dosage forms and delivery systems, including drugs derived from biotechnology and the manufacturing science pertaining to the commercialization of such dosage forms. Because of its electronic nature, AAPS PharmSciTech aspires to utilize evolving electronic technology to enable faster and diverse mechanisms of information delivery to its readership. Submission of uninvited expert reviews and research articles are welcomed.
期刊最新文献
Harnessing Exercise-Like Benefits of Protonation prone Liposomal Resveratrol in Differentiated Fat Cells: A Proof-of-Concept Study Biogenic Amino Acid Cross-Linked Hyaluronic Acid Nanoparticles Containing Dexamethasone for the Treatment of Dry Eye Syndrome Exploration of Conventional and FDM-Mediated 3D Printed Tablets Fabricated Using HME-Based Filaments for pH-Dependent Drug Delivery Novel Methods Developed in Bioequivalence Assays: Patent Review Co-Delivery of Tacrolimus and Thymoquinone Topically by Nanostructured Lipid Carrier Gel for Enhanced Efficacy Against Psoriasis
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1