Measurement of In-Plane Thermal Diffusivity of Polymer Films in Air Using Laser Periodic Heating Method

IF 2.5 4区 工程技术 Q3 CHEMISTRY, PHYSICAL International Journal of Thermophysics Pub Date : 2025-01-09 DOI:10.1007/s10765-024-03491-4
Maochao Lv, Jie Yang, Yanhui Zhang, Jianli Wang, Yi Zhou
{"title":"Measurement of In-Plane Thermal Diffusivity of Polymer Films in Air Using Laser Periodic Heating Method","authors":"Maochao Lv,&nbsp;Jie Yang,&nbsp;Yanhui Zhang,&nbsp;Jianli Wang,&nbsp;Yi Zhou","doi":"10.1007/s10765-024-03491-4","DOIUrl":null,"url":null,"abstract":"<div><p>The laser periodic heating method is widely used to measure the thermal diffusivity of various thin films. In this technique, surface temperature responses are monitored using either an infrared (IR) camera or a thermocouple (TC) detector. Under air pressure, the impact of air heat loss on these two measurement methods warrants further examination. In this study, we measured the in-plane thermal diffusivity of a polyethylene terephthalate (PET) film under air pressure using both a non-research-grade IR camera and a microscale TC. Results indicate that air heat loss significantly influenced the TC measurements, yielding an abnormally high thermal diffusivity. Comparatively, the thermal diffusivity measured by the IR camera decreased slightly as modulation frequency increased from 0.1 Hz to 1 Hz. When the thermal diffusion length was approximately three times the film thickness, the diffusivity values from the IR camera closely matched those obtained under vacuum, indicating that the non-contact IR method can effectively suppress the impact of air heat loss.</p></div>","PeriodicalId":598,"journal":{"name":"International Journal of Thermophysics","volume":"46 2","pages":""},"PeriodicalIF":2.5000,"publicationDate":"2025-01-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Thermophysics","FirstCategoryId":"5","ListUrlMain":"https://link.springer.com/article/10.1007/s10765-024-03491-4","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0

Abstract

The laser periodic heating method is widely used to measure the thermal diffusivity of various thin films. In this technique, surface temperature responses are monitored using either an infrared (IR) camera or a thermocouple (TC) detector. Under air pressure, the impact of air heat loss on these two measurement methods warrants further examination. In this study, we measured the in-plane thermal diffusivity of a polyethylene terephthalate (PET) film under air pressure using both a non-research-grade IR camera and a microscale TC. Results indicate that air heat loss significantly influenced the TC measurements, yielding an abnormally high thermal diffusivity. Comparatively, the thermal diffusivity measured by the IR camera decreased slightly as modulation frequency increased from 0.1 Hz to 1 Hz. When the thermal diffusion length was approximately three times the film thickness, the diffusivity values from the IR camera closely matched those obtained under vacuum, indicating that the non-contact IR method can effectively suppress the impact of air heat loss.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
求助全文
约1分钟内获得全文 去求助
来源期刊
CiteScore
4.10
自引率
9.10%
发文量
179
审稿时长
5 months
期刊介绍: International Journal of Thermophysics serves as an international medium for the publication of papers in thermophysics, assisting both generators and users of thermophysical properties data. This distinguished journal publishes both experimental and theoretical papers on thermophysical properties of matter in the liquid, gaseous, and solid states (including soft matter, biofluids, and nano- and bio-materials), on instrumentation and techniques leading to their measurement, and on computer studies of model and related systems. Studies in all ranges of temperature, pressure, wavelength, and other relevant variables are included.
期刊最新文献
Exploring Low-GWP Alternatives for Heat Pumps: A Drop-in Comparative Study of R1234yf/R600a and R134a Measurement of In-Plane Thermal Diffusivity of Polymer Films in Air Using Laser Periodic Heating Method Closed-Form Approximate Solution for Thermo-Mechanical Performance Analysis of Thermoelectric Generators with Temperature-Dependent Material Properties by Differential Transform Method Quest for a Single van der Waals Loop: A Four-Parameter Cubic Equation of State Tailored to a Reference Formulation for Propane Density, Viscosity, and Refractive Index Variations in Diesel Fuel + Higher Alcohols Blends at Various Temperatures
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1