Continuous conversion of flue gas into syngas by a bipolar membrane-integrated single-cell cyclic system

IF 35.4 1区 材料科学 Q1 CHEMISTRY, PHYSICAL Joule Pub Date : 2025-03-19 DOI:10.1016/j.joule.2024.12.007
Dayin He , Xianhui Ma , Huang Zhou , Yu Zhang , Yuen Wu
{"title":"Continuous conversion of flue gas into syngas by a bipolar membrane-integrated single-cell cyclic system","authors":"Dayin He ,&nbsp;Xianhui Ma ,&nbsp;Huang Zhou ,&nbsp;Yu Zhang ,&nbsp;Yuen Wu","doi":"10.1016/j.joule.2024.12.007","DOIUrl":null,"url":null,"abstract":"<div><div>Electrochemical CO<sub>2</sub> reduction reaction (ECO<sub>2</sub>RR) usually requires high-purity CO<sub>2</sub> gas feeding. However, capturing CO<sub>2</sub> from flue gas is still a cost- and energy-intensive process. Here, we design a bipolar membrane-integrated single-cell cyclic system that directly converts simulated flue gas into syngas. The system features a circulating gas-liquid mixed flow between the anode and cathode in an integrated cell, enabling it to simultaneously absorb CO<sub>2</sub> from flue gas and convert captured CO<sub>2</sub> into syngas. At an industrial current density of 250 mA/cm<sup>2</sup>, we successfully decrease the CO<sub>2</sub> concentration in flue gas from 15% to 4.3% (with a 61.7% CO<sub>2</sub> capture efficiency) and obtain high-selectivity (up to 100%) syngas (H<sub>2</sub>:CO = 3:1). Moreover, this cell has excellent tolerance to SO<sub>x</sub> and NO<sub>x</sub> due to the Ni single-atom catalyst in the cathode compared with previous studies. These results pave the way for low-concentration carbon dioxide conversion and promote the application of ECO<sub>2</sub>RR technology.</div></div>","PeriodicalId":343,"journal":{"name":"Joule","volume":"9 3","pages":"Article 101806"},"PeriodicalIF":35.4000,"publicationDate":"2025-03-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Joule","FirstCategoryId":"88","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2542435124005427","RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0

Abstract

Electrochemical CO2 reduction reaction (ECO2RR) usually requires high-purity CO2 gas feeding. However, capturing CO2 from flue gas is still a cost- and energy-intensive process. Here, we design a bipolar membrane-integrated single-cell cyclic system that directly converts simulated flue gas into syngas. The system features a circulating gas-liquid mixed flow between the anode and cathode in an integrated cell, enabling it to simultaneously absorb CO2 from flue gas and convert captured CO2 into syngas. At an industrial current density of 250 mA/cm2, we successfully decrease the CO2 concentration in flue gas from 15% to 4.3% (with a 61.7% CO2 capture efficiency) and obtain high-selectivity (up to 100%) syngas (H2:CO = 3:1). Moreover, this cell has excellent tolerance to SOx and NOx due to the Ni single-atom catalyst in the cathode compared with previous studies. These results pave the way for low-concentration carbon dioxide conversion and promote the application of ECO2RR technology.

Abstract Image

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
通过双极膜集成单细胞循环系统将烟气连续转化为合成气
电化学CO2还原反应(ECO2RR)通常需要高纯CO2供气。然而,从烟气中捕获二氧化碳仍然是一个成本和能源密集型的过程。在这里,我们设计了一个双极膜集成单细胞循环系统,直接将模拟烟气转化为合成气。该系统的特点是在集成电池的阳极和阴极之间循环气液混合流动,使其能够同时从烟气中吸收二氧化碳并将捕获的二氧化碳转化为合成气。在250毫安/平方厘米的工业电流密度下,我们成功地将烟气中的二氧化碳浓度从15%降低到4.3%(二氧化碳捕获效率为61.7%),并获得高选择性(高达100%)合成气(H2:CO = 3:1)。此外,与以往的研究相比,由于阴极中使用了Ni单原子催化剂,该电池对SOx和NOx具有优异的耐受性。这些结果为低浓度二氧化碳转化铺平了道路,促进了ECO2RR技术的应用。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Joule
Joule Energy-General Energy
CiteScore
53.10
自引率
2.00%
发文量
198
期刊介绍: Joule is a sister journal to Cell that focuses on research, analysis, and ideas related to sustainable energy. It aims to address the global challenge of the need for more sustainable energy solutions. Joule is a forward-looking journal that bridges disciplines and scales of energy research. It connects researchers and analysts working on scientific, technical, economic, policy, and social challenges related to sustainable energy. The journal covers a wide range of energy research, from fundamental laboratory studies on energy conversion and storage to global-level analysis. Joule aims to highlight and amplify the implications, challenges, and opportunities of novel energy research for different groups in the field.
期刊最新文献
A critical outlook for large-scale all-solid-state batteries Ethylene carbonate-free electrolytes toward better lithium-ion batteries Seeing the unseen: Real-time tracking of battery cycling-to-failure via surface strain Global land and solar energy relationships for sustainability Machine learning-driven interface material design for high-performance perovskite solar cells with scalability and band-gap universality
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1