A spatiotemporal and machine-learning platform facilitates the manufacturing of hPSC-derived esophageal mucosa

IF 10.7 1区 生物学 Q1 CELL BIOLOGY Developmental cell Pub Date : 2025-01-10 DOI:10.1016/j.devcel.2024.12.030
Ying Yang, Carmel Grace McCullough, Lucas Seninge, Lihao Guo, Woo-Joo Kwon, Yongchun Zhang, Nancy Yanzhe Li, Sadhana Gaddam, Cory Pan, Hanson Zhen, Jessica Torkelson, Ian A. Glass, Gregory W. Charville, Jianwen Que, Joshua M. Stuart, Hongxu Ding, Anthony E. Oro
{"title":"A spatiotemporal and machine-learning platform facilitates the manufacturing of hPSC-derived esophageal mucosa","authors":"Ying Yang, Carmel Grace McCullough, Lucas Seninge, Lihao Guo, Woo-Joo Kwon, Yongchun Zhang, Nancy Yanzhe Li, Sadhana Gaddam, Cory Pan, Hanson Zhen, Jessica Torkelson, Ian A. Glass, Gregory W. Charville, Jianwen Que, Joshua M. Stuart, Hongxu Ding, Anthony E. Oro","doi":"10.1016/j.devcel.2024.12.030","DOIUrl":null,"url":null,"abstract":"Human pluripotent stem cell-derived tissue engineering offers great promise for designer cell-based personalized therapeutics, but harnessing such potential requires a deeper understanding of tissue-level interactions. We previously developed a cell replacement manufacturing method for ectoderm-derived skin epithelium. However, it remains challenging to manufacture the endoderm-derived esophageal epithelium despite possessing a similar stratified epithelial structure. Here, we employ single-cell and spatial technologies to generate a spatiotemporal multi-omics cell census for human esophageal development. We identify the cellular diversity, dynamics, and signal communications for the developing esophageal epithelium and stroma. Using Manatee, a machine-learning algorithm, we prioritize the combinations of candidate human developmental signals for <em>in vitro</em> derivation of esophageal basal cells. Functional validation of Manatee predictions leads to a clinically compatible system for manufacturing human esophageal mucosa.","PeriodicalId":11157,"journal":{"name":"Developmental cell","volume":"28 1","pages":""},"PeriodicalIF":10.7000,"publicationDate":"2025-01-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Developmental cell","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1016/j.devcel.2024.12.030","RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CELL BIOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

Human pluripotent stem cell-derived tissue engineering offers great promise for designer cell-based personalized therapeutics, but harnessing such potential requires a deeper understanding of tissue-level interactions. We previously developed a cell replacement manufacturing method for ectoderm-derived skin epithelium. However, it remains challenging to manufacture the endoderm-derived esophageal epithelium despite possessing a similar stratified epithelial structure. Here, we employ single-cell and spatial technologies to generate a spatiotemporal multi-omics cell census for human esophageal development. We identify the cellular diversity, dynamics, and signal communications for the developing esophageal epithelium and stroma. Using Manatee, a machine-learning algorithm, we prioritize the combinations of candidate human developmental signals for in vitro derivation of esophageal basal cells. Functional validation of Manatee predictions leads to a clinically compatible system for manufacturing human esophageal mucosa.

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
一个时空和机器学习平台促进了hpsc来源的食管粘膜的制造
人类多能干细胞衍生的组织工程为基于设计细胞的个性化治疗提供了巨大的希望,但利用这种潜力需要对组织水平的相互作用有更深入的了解。我们之前开发了一种细胞替代制造方法,用于外胚层来源的皮肤上皮。然而,尽管具有类似的层状上皮结构,但制造内胚层来源的食管上皮仍然具有挑战性。在这里,我们采用单细胞和空间技术来生成人类食管发育的时空多组学细胞普查。我们确定细胞多样性,动态和信号通信的发展食管上皮和间质。使用机器学习算法Manatee,我们优先考虑候选人类发育信号的组合,用于食管基底细胞的体外衍生。对海牛预测的功能验证导致了一个临床兼容的制造人类食管粘膜的系统。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Developmental cell
Developmental cell 生物-发育生物学
CiteScore
18.90
自引率
1.70%
发文量
203
审稿时长
3-6 weeks
期刊介绍: Developmental Cell, established in 2001, is a comprehensive journal that explores a wide range of topics in cell and developmental biology. Our publication encompasses work across various disciplines within biology, with a particular emphasis on investigating the intersections between cell biology, developmental biology, and other related fields. Our primary objective is to present research conducted through a cell biological perspective, addressing the essential mechanisms governing cell function, cellular interactions, and responses to the environment. Moreover, we focus on understanding the collective behavior of cells, culminating in the formation of tissues, organs, and whole organisms, while also investigating the consequences of any malfunctions in these intricate processes.
期刊最新文献
Long-lived cytokinetic bridges coordinate sister-cell elimination in mouse embryos A forward genetic screen identifies potassium channel essentiality in SHH medulloblastoma maintenance An orphan gene BOOSTER enhances photosynthetic efficiency and plant productivity Plasticity in metastatic colorectal cancer Lactate shuttling links histone lactylation to adult hippocampal neurogenesis in mice
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1