Regional-specific trends of PM2.5 and O3 temperature sensitivity in the United States

IF 8.5 1区 地球科学 Q1 METEOROLOGY & ATMOSPHERIC SCIENCES npj Climate and Atmospheric Science Pub Date : 2025-01-10 DOI:10.1038/s41612-024-00862-4
Lifei Yin, Bin Bai, Bingqing Zhang, Qiao Zhu, Qian Di, Weeberb J. Requia, Joel D. Schwartz, Liuhua Shi, Pengfei Liu
{"title":"Regional-specific trends of PM2.5 and O3 temperature sensitivity in the United States","authors":"Lifei Yin, Bin Bai, Bingqing Zhang, Qiao Zhu, Qian Di, Weeberb J. Requia, Joel D. Schwartz, Liuhua Shi, Pengfei Liu","doi":"10.1038/s41612-024-00862-4","DOIUrl":null,"url":null,"abstract":"<p>Climate change poses direct and indirect threats to public health, including exacerbating air pollution. However, the influence of rising temperature on air quality remains highly uncertain in the United States, particularly under rapid reduction in anthropogenic emissions. Here, we examined the sensitivity of surface-level fine particulate matter (PM<sub>2.5</sub>) and ozone (O<sub>3</sub>) to summer temperature anomalies in the contiguous US as well as their decadal changes using high-resolution datasets generated by machine learning. Our findings demonstrate that in the eastern US, stringent emission control strategies have significantly reduced the positive responses of PM<sub>2.5</sub> and O<sub>3</sub> to summer temperature, thereby lowering the population exposure associated with warming-induced air quality deterioration. In contrast, PM<sub>2.5</sub> in the western US became more sensitive to temperature, highlighting the urgent need to manage and mitigate the impact of worsening wildfires. Our results have important implications for air quality management and risk assessments of future climate change.</p>","PeriodicalId":19438,"journal":{"name":"npj Climate and Atmospheric Science","volume":"13 1","pages":""},"PeriodicalIF":8.5000,"publicationDate":"2025-01-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"npj Climate and Atmospheric Science","FirstCategoryId":"89","ListUrlMain":"https://doi.org/10.1038/s41612-024-00862-4","RegionNum":1,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"METEOROLOGY & ATMOSPHERIC SCIENCES","Score":null,"Total":0}
引用次数: 0

Abstract

Climate change poses direct and indirect threats to public health, including exacerbating air pollution. However, the influence of rising temperature on air quality remains highly uncertain in the United States, particularly under rapid reduction in anthropogenic emissions. Here, we examined the sensitivity of surface-level fine particulate matter (PM2.5) and ozone (O3) to summer temperature anomalies in the contiguous US as well as their decadal changes using high-resolution datasets generated by machine learning. Our findings demonstrate that in the eastern US, stringent emission control strategies have significantly reduced the positive responses of PM2.5 and O3 to summer temperature, thereby lowering the population exposure associated with warming-induced air quality deterioration. In contrast, PM2.5 in the western US became more sensitive to temperature, highlighting the urgent need to manage and mitigate the impact of worsening wildfires. Our results have important implications for air quality management and risk assessments of future climate change.

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
美国PM2.5和O3温度敏感性的区域特定趋势
气候变化对公众健康构成直接和间接威胁,包括加剧空气污染。然而,在美国,气温上升对空气质量的影响仍然高度不确定,特别是在人为排放迅速减少的情况下。在这里,我们使用机器学习生成的高分辨率数据集研究了地表细颗粒物(PM2.5)和臭氧(O3)对美国邻近地区夏季温度异常的敏感性以及它们的年代际变化。我们的研究结果表明,在美国东部,严格的排放控制策略显著降低了PM2.5和O3对夏季温度的正响应,从而降低了与变暖引起的空气质量恶化相关的人口暴露。相比之下,美国西部的PM2.5对温度更加敏感,这凸显了管理和减轻日益恶化的野火影响的紧迫性。我们的研究结果对空气质量管理和未来气候变化风险评估具有重要意义。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
npj Climate and Atmospheric Science
npj Climate and Atmospheric Science Earth and Planetary Sciences-Atmospheric Science
CiteScore
8.80
自引率
3.30%
发文量
87
审稿时长
21 weeks
期刊介绍: npj Climate and Atmospheric Science is an open-access journal encompassing the relevant physical, chemical, and biological aspects of atmospheric and climate science. The journal places particular emphasis on regional studies that unveil new insights into specific localities, including examinations of local atmospheric composition, such as aerosols. The range of topics covered by the journal includes climate dynamics, climate variability, weather and climate prediction, climate change, ocean dynamics, weather extremes, air pollution, atmospheric chemistry (including aerosols), the hydrological cycle, and atmosphere–ocean and atmosphere–land interactions. The journal welcomes studies employing a diverse array of methods, including numerical and statistical modeling, the development and application of in situ observational techniques, remote sensing, and the development or evaluation of new reanalyses.
期刊最新文献
A new last two millennium reanalysis based on hybrid gain analog offline EnKF and an expanded proxy database Impact of the centennial changes in ENSO on the rise of the Chinese Qing empire Rapid decline and mortality of a Pleistocene-aged forest now submerged in the northern Gulf of Mexico, USA Beaufort sea ice loss contributes to enhanced health exposure to fire weather over Southeast Asia Age inequality in temperature-related fall mortality among old people in China in a warming climate
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1