E Deng, Qian Xiang, Johnny C. L. Chan, Yue Dong, Shifei Tu, Pak-Wai Chan, Yi-Qing Ni
{"title":"Increasing temporal stability of global tropical cyclone precipitation","authors":"E Deng, Qian Xiang, Johnny C. L. Chan, Yue Dong, Shifei Tu, Pak-Wai Chan, Yi-Qing Ni","doi":"10.1038/s41612-025-00896-2","DOIUrl":null,"url":null,"abstract":"<p>Tropical cyclone (TC) precipitation has led to escalating urban flooding and transportation disruptions in recent years. The volatility of the TC rain rate (RR) over short periods complicates accurate forecasting. Here, we use satellite-based observational rainfall datasets from 1998 to 2019 to calculate changes in TC 24-h RR and quantify the temporal stability of TC precipitation. We demonstrate a significant global increase in the annual temporal stability of TC RR across the total rainfall area, inner-core, and rainband areas. Specifically, the probabilities of rapid RR increase and decrease events in the TC total rainfall area decreased at rates of –1.74 ± 0.57% per decade and –2.23 ± 0.55% per decade, respectively. Based on the reanalysis dataset, we propose that the synergistic effects of increased atmospheric stability and total column water vapor—both resulting from anthropogenic warming at low latitudes—are potentially associated with this trend.</p>","PeriodicalId":19438,"journal":{"name":"npj Climate and Atmospheric Science","volume":"56 1","pages":""},"PeriodicalIF":8.5000,"publicationDate":"2025-01-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"npj Climate and Atmospheric Science","FirstCategoryId":"89","ListUrlMain":"https://doi.org/10.1038/s41612-025-00896-2","RegionNum":1,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"METEOROLOGY & ATMOSPHERIC SCIENCES","Score":null,"Total":0}
引用次数: 0
Abstract
Tropical cyclone (TC) precipitation has led to escalating urban flooding and transportation disruptions in recent years. The volatility of the TC rain rate (RR) over short periods complicates accurate forecasting. Here, we use satellite-based observational rainfall datasets from 1998 to 2019 to calculate changes in TC 24-h RR and quantify the temporal stability of TC precipitation. We demonstrate a significant global increase in the annual temporal stability of TC RR across the total rainfall area, inner-core, and rainband areas. Specifically, the probabilities of rapid RR increase and decrease events in the TC total rainfall area decreased at rates of –1.74 ± 0.57% per decade and –2.23 ± 0.55% per decade, respectively. Based on the reanalysis dataset, we propose that the synergistic effects of increased atmospheric stability and total column water vapor—both resulting from anthropogenic warming at low latitudes—are potentially associated with this trend.
期刊介绍:
npj Climate and Atmospheric Science is an open-access journal encompassing the relevant physical, chemical, and biological aspects of atmospheric and climate science. The journal places particular emphasis on regional studies that unveil new insights into specific localities, including examinations of local atmospheric composition, such as aerosols.
The range of topics covered by the journal includes climate dynamics, climate variability, weather and climate prediction, climate change, ocean dynamics, weather extremes, air pollution, atmospheric chemistry (including aerosols), the hydrological cycle, and atmosphere–ocean and atmosphere–land interactions. The journal welcomes studies employing a diverse array of methods, including numerical and statistical modeling, the development and application of in situ observational techniques, remote sensing, and the development or evaluation of new reanalyses.