Baojuan Huai, Minghu Ding, Michiel R. van den Broeke, Carleen H. Reijmer, Brice Noël, Weijun Sun, Yetang Wang
{"title":"Future large-scale atmospheric circulation changes and Greenland precipitation","authors":"Baojuan Huai, Minghu Ding, Michiel R. van den Broeke, Carleen H. Reijmer, Brice Noël, Weijun Sun, Yetang Wang","doi":"10.1038/s41612-025-00899-z","DOIUrl":null,"url":null,"abstract":"<p>In this work, we examine connections between patterns of future Greenland precipitation and large-scale atmospheric circulation changes over the Northern Hemisphere. In the last three decades of the 21st century, CMIP5 and CMIP6 ensemble mean precipitation significantly decreases over the northern part of the North Atlantic Ocean with respect to 1951–1980. This drying signal extends from the ocean to the southeastern margin of Greenland. The 500 hPa geopotential height change shows a clear pattern including a widespread increase across the Arctic with a negative anomaly centered over Iceland and surrounding regions. To identify the mechanisms linking atmospheric circulation variability with Greenland precipitation, we perform a singular value decomposition (SVD) and center of action (COA) analysis. We find that a northeastward shift of the Icelandic Low (IL) under the SSP5‐8.5 warming scenario leads to the drying signal found in southeast Greenland. This implies that the IL location will have a strong influence on precipitation changes over southeast Greenland in the future, impacting projections of Greenland ice sheet surface mass balance.</p>","PeriodicalId":19438,"journal":{"name":"npj Climate and Atmospheric Science","volume":"39 1","pages":""},"PeriodicalIF":8.5000,"publicationDate":"2025-01-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"npj Climate and Atmospheric Science","FirstCategoryId":"89","ListUrlMain":"https://doi.org/10.1038/s41612-025-00899-z","RegionNum":1,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"METEOROLOGY & ATMOSPHERIC SCIENCES","Score":null,"Total":0}
引用次数: 0
Abstract
In this work, we examine connections between patterns of future Greenland precipitation and large-scale atmospheric circulation changes over the Northern Hemisphere. In the last three decades of the 21st century, CMIP5 and CMIP6 ensemble mean precipitation significantly decreases over the northern part of the North Atlantic Ocean with respect to 1951–1980. This drying signal extends from the ocean to the southeastern margin of Greenland. The 500 hPa geopotential height change shows a clear pattern including a widespread increase across the Arctic with a negative anomaly centered over Iceland and surrounding regions. To identify the mechanisms linking atmospheric circulation variability with Greenland precipitation, we perform a singular value decomposition (SVD) and center of action (COA) analysis. We find that a northeastward shift of the Icelandic Low (IL) under the SSP5‐8.5 warming scenario leads to the drying signal found in southeast Greenland. This implies that the IL location will have a strong influence on precipitation changes over southeast Greenland in the future, impacting projections of Greenland ice sheet surface mass balance.
期刊介绍:
npj Climate and Atmospheric Science is an open-access journal encompassing the relevant physical, chemical, and biological aspects of atmospheric and climate science. The journal places particular emphasis on regional studies that unveil new insights into specific localities, including examinations of local atmospheric composition, such as aerosols.
The range of topics covered by the journal includes climate dynamics, climate variability, weather and climate prediction, climate change, ocean dynamics, weather extremes, air pollution, atmospheric chemistry (including aerosols), the hydrological cycle, and atmosphere–ocean and atmosphere–land interactions. The journal welcomes studies employing a diverse array of methods, including numerical and statistical modeling, the development and application of in situ observational techniques, remote sensing, and the development or evaluation of new reanalyses.