Weakly-aligned cross-modal learning framework for subsurface defect segmentation on building façades using UAVs

IF 9.6 1区 工程技术 Q1 CONSTRUCTION & BUILDING TECHNOLOGY Automation in Construction Pub Date : 2025-01-08 DOI:10.1016/j.autcon.2024.105946
Sudao He, Gang Zhao, Jun Chen, Shenghan Zhang, Dhanada Mishra, Matthew Ming-Fai Yuen
{"title":"Weakly-aligned cross-modal learning framework for subsurface defect segmentation on building façades using UAVs","authors":"Sudao He, Gang Zhao, Jun Chen, Shenghan Zhang, Dhanada Mishra, Matthew Ming-Fai Yuen","doi":"10.1016/j.autcon.2024.105946","DOIUrl":null,"url":null,"abstract":"Infrared (IR) thermography combined with Unmanned Aerial Vehicles (UAVs) offers an innovative approach for automated building façades inspections. However, extracting quantitative defect information from a single image poses a significant challenge. To address this, this paper introduces a Weakly-aligned Cross-modal Learning framework for subsurface defect segmentation using UAVs. This framework consists of two main components: the Multimodal Feature Description Network (MFDN) and the Prompt-aided Cross-modal Graph Learning (PCGL) algorithm. Initially, RGB–IR image pairs are processed by MFDN to extract feature descriptors for multi-modal alignment. The PCGL algorithm identifies visually critical areas through graph partitioning on a Wasserstein graph. These critical areas are transferred to the aligned IR image, and a Wasserstein Adjacency Graph (WAG) is constructed based on masked superpixel segmentation. Finally, the defects contours are pinpointed by detecting abnormal vertices of the WAG. The effectiveness is validated through controlled laboratory experiments and field applications on tiled façades.","PeriodicalId":8660,"journal":{"name":"Automation in Construction","volume":"6 1","pages":""},"PeriodicalIF":9.6000,"publicationDate":"2025-01-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Automation in Construction","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1016/j.autcon.2024.105946","RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CONSTRUCTION & BUILDING TECHNOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

Infrared (IR) thermography combined with Unmanned Aerial Vehicles (UAVs) offers an innovative approach for automated building façades inspections. However, extracting quantitative defect information from a single image poses a significant challenge. To address this, this paper introduces a Weakly-aligned Cross-modal Learning framework for subsurface defect segmentation using UAVs. This framework consists of two main components: the Multimodal Feature Description Network (MFDN) and the Prompt-aided Cross-modal Graph Learning (PCGL) algorithm. Initially, RGB–IR image pairs are processed by MFDN to extract feature descriptors for multi-modal alignment. The PCGL algorithm identifies visually critical areas through graph partitioning on a Wasserstein graph. These critical areas are transferred to the aligned IR image, and a Wasserstein Adjacency Graph (WAG) is constructed based on masked superpixel segmentation. Finally, the defects contours are pinpointed by detecting abnormal vertices of the WAG. The effectiveness is validated through controlled laboratory experiments and field applications on tiled façades.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
求助全文
约1分钟内获得全文 去求助
来源期刊
Automation in Construction
Automation in Construction 工程技术-工程:土木
CiteScore
19.20
自引率
16.50%
发文量
563
审稿时长
8.5 months
期刊介绍: Automation in Construction is an international journal that focuses on publishing original research papers related to the use of Information Technologies in various aspects of the construction industry. The journal covers topics such as design, engineering, construction technologies, and the maintenance and management of constructed facilities. The scope of Automation in Construction is extensive and covers all stages of the construction life cycle. This includes initial planning and design, construction of the facility, operation and maintenance, as well as the eventual dismantling and recycling of buildings and engineering structures.
期刊最新文献
Multi-objective optimization for flexible design of aerial building machine under various wind conditions AI-driven computer vision-based automated repair activity identification for seismically damaged RC columns Structural design and fabrication of concrete reinforcement with layout optimisation and robotic filament winding Digital twin construction with a focus on human twin interfaces Weakly-aligned cross-modal learning framework for subsurface defect segmentation on building façades using UAVs
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1