Perivascular cells function as key mediators of mechanical and structural changes in vascular capillaries

IF 11.7 1区 综合性期刊 Q1 MULTIDISCIPLINARY SCIENCES Science Advances Pub Date : 2025-01-10 DOI:10.1126/sciadv.adp3789
Cristiane M. Franca, Maria Elisa Lima Verde, Alice Correa Silva-Sousa, Amin Mansoorifar, Avathamsa Athirasala, Ramesh Subbiah, Anthony Tahayeri, Mauricio Sousa, May Anny Fraga, Rahul M. Visalakshan, Aaron Doe, Keith Beadle, McKenna Finley, Emilios Dimitriadis, Jennifer Bays, Marina Uroz, Kenneth M. Yamada, Christopher Chen, Luiz E. Bertassoni
{"title":"Perivascular cells function as key mediators of mechanical and structural changes in vascular capillaries","authors":"Cristiane M. Franca, Maria Elisa Lima Verde, Alice Correa Silva-Sousa, Amin Mansoorifar, Avathamsa Athirasala, Ramesh Subbiah, Anthony Tahayeri, Mauricio Sousa, May Anny Fraga, Rahul M. Visalakshan, Aaron Doe, Keith Beadle, McKenna Finley, Emilios Dimitriadis, Jennifer Bays, Marina Uroz, Kenneth M. Yamada, Christopher Chen, Luiz E. Bertassoni","doi":"10.1126/sciadv.adp3789","DOIUrl":null,"url":null,"abstract":"A hallmark of chronic and inflammatory diseases is the formation of a fibrotic and stiff extracellular matrix (ECM), typically associated with abnormal, leaky microvascular capillaries. Mechanisms explaining how the microvasculature responds to ECM alterations remain unknown. Here, we used a microphysiological model of capillaries on a chip mimicking the characteristics of healthy or fibrotic collagen to test the hypothesis that perivascular cells mediate the response of vascular capillaries to mechanical and structural changes in the human ECM. Capillaries engineered in altered fibrotic collagen had abnormal migration of perivascular cells, reduced pericyte differentiation, increased leakage, and higher regulation of inflammatory/remodeling genes, all regulated via <jats:italic>NOTCH3</jats:italic> , a known mediator of endothelial-perivascular cell communication. Capillaries engineered either with endothelial cells alone or with perivascular cells silenced for <jats:italic>NOTCH3</jats:italic> expression showed a minimal response to ECM alterations. These findings reveal a previously unknown mechanism of vascular response to changes in the ECM in health and disease.","PeriodicalId":21609,"journal":{"name":"Science Advances","volume":"33 1","pages":""},"PeriodicalIF":11.7000,"publicationDate":"2025-01-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Science Advances","FirstCategoryId":"103","ListUrlMain":"https://doi.org/10.1126/sciadv.adp3789","RegionNum":1,"RegionCategory":"综合性期刊","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MULTIDISCIPLINARY SCIENCES","Score":null,"Total":0}
引用次数: 0

Abstract

A hallmark of chronic and inflammatory diseases is the formation of a fibrotic and stiff extracellular matrix (ECM), typically associated with abnormal, leaky microvascular capillaries. Mechanisms explaining how the microvasculature responds to ECM alterations remain unknown. Here, we used a microphysiological model of capillaries on a chip mimicking the characteristics of healthy or fibrotic collagen to test the hypothesis that perivascular cells mediate the response of vascular capillaries to mechanical and structural changes in the human ECM. Capillaries engineered in altered fibrotic collagen had abnormal migration of perivascular cells, reduced pericyte differentiation, increased leakage, and higher regulation of inflammatory/remodeling genes, all regulated via NOTCH3 , a known mediator of endothelial-perivascular cell communication. Capillaries engineered either with endothelial cells alone or with perivascular cells silenced for NOTCH3 expression showed a minimal response to ECM alterations. These findings reveal a previously unknown mechanism of vascular response to changes in the ECM in health and disease.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
血管周围细胞是血管毛细血管机械和结构变化的关键介质
慢性和炎症性疾病的一个标志是纤维化和僵硬的细胞外基质(ECM)的形成,通常与异常、渗漏的微血管毛细血管有关。微血管系统对ECM改变的反应机制尚不清楚。在这里,我们使用芯片上的毛细血管微生理模型来模拟健康或纤维化胶原的特征,以验证血管周围细胞介导血管毛细血管对人类ECM机械和结构变化的反应的假设。在改变的纤维化胶原中进行工程改造的毛细血管会导致血管周围细胞的异常迁移、周细胞分化减少、渗漏增加以及炎症/重塑基因的更高调节,所有这些都是通过NOTCH3调节的,NOTCH3是一种已知的内皮-血管周围细胞通讯的介质。内皮细胞单独改造的毛细血管或沉默NOTCH3表达的血管周围细胞对ECM改变的反应最小。这些发现揭示了健康和疾病中血管对ECM变化的反应机制。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Science Advances
Science Advances 综合性期刊-综合性期刊
CiteScore
21.40
自引率
1.50%
发文量
1937
审稿时长
29 weeks
期刊介绍: Science Advances, an open-access journal by AAAS, publishes impactful research in diverse scientific areas. It aims for fair, fast, and expert peer review, providing freely accessible research to readers. Led by distinguished scientists, the journal supports AAAS's mission by extending Science magazine's capacity to identify and promote significant advances. Evolving digital publishing technologies play a crucial role in advancing AAAS's global mission for science communication and benefitting humankind.
期刊最新文献
A photovoltaic-electrolysis system with high solar-to-hydrogen efficiency under practical current densities. Ambient outdoor heat and accelerated epigenetic aging among older adults in the US. An endogenous GLP-1 circuit engages VTA GABA neurons to regulate mesolimbic dopamine neurons and attenuate cocaine seeking. Dimeric assembly of F1-like ATPase for the gliding motility of Mycoplasma. Fault material heterogeneity controls deep interplate earthquakes.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1