{"title":"Learning Meshing from Delaunay Triangulation for 3D Shape Representation","authors":"Chen Zhang, Wenbing Tao","doi":"10.1007/s11263-024-02344-9","DOIUrl":null,"url":null,"abstract":"<p>Recently, there has been a growing interest in learning-based explicit methods due to their ability to respect the original input and preserve details. However, the connectivity on complex structures is still difficult to infer due to the limited local shape perception, resulting in artifacts and non-watertight triangles. In this paper, we present a novel learning-based method with Delaunay triangulation to achieve high-precision reconstruction. We model the Delaunay triangulation as a dual graph, extract multi-scale geometric information from the points, and embed it into the structural representation of Delaunay triangulation in an organic way, benefiting fine-grained details reconstruction. To encourage neighborhood information interaction of edges and nodes in the graph, we introduce a Local Graph Iteration algorithm, serving as a variant of graph neural network. Benefiting from its robust local processing for dual graph, a scaling strategy is designed to enable large-scale reconstruction. Moreover, due to the complicated spatial relations between tetrahedrons and the ground truth surface, it is hard to directly generate ground truth labels of tetrahedrons for supervision. Therefore, we propose a multi-label supervision strategy, which is integrated in the loss we design for this task and allows our method to obtain robust labeling without visibility information. Experiments show that our method yields watertight and high-quality meshes. Especially for some thin structures and sharp edges, our method shows better performance than the current state-of-the-art methods. Furthermore, it has a strong adaptability to point clouds of different densities.</p>","PeriodicalId":13752,"journal":{"name":"International Journal of Computer Vision","volume":"6 1","pages":""},"PeriodicalIF":11.6000,"publicationDate":"2025-01-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Computer Vision","FirstCategoryId":"94","ListUrlMain":"https://doi.org/10.1007/s11263-024-02344-9","RegionNum":2,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE","Score":null,"Total":0}
引用次数: 0
Abstract
Recently, there has been a growing interest in learning-based explicit methods due to their ability to respect the original input and preserve details. However, the connectivity on complex structures is still difficult to infer due to the limited local shape perception, resulting in artifacts and non-watertight triangles. In this paper, we present a novel learning-based method with Delaunay triangulation to achieve high-precision reconstruction. We model the Delaunay triangulation as a dual graph, extract multi-scale geometric information from the points, and embed it into the structural representation of Delaunay triangulation in an organic way, benefiting fine-grained details reconstruction. To encourage neighborhood information interaction of edges and nodes in the graph, we introduce a Local Graph Iteration algorithm, serving as a variant of graph neural network. Benefiting from its robust local processing for dual graph, a scaling strategy is designed to enable large-scale reconstruction. Moreover, due to the complicated spatial relations between tetrahedrons and the ground truth surface, it is hard to directly generate ground truth labels of tetrahedrons for supervision. Therefore, we propose a multi-label supervision strategy, which is integrated in the loss we design for this task and allows our method to obtain robust labeling without visibility information. Experiments show that our method yields watertight and high-quality meshes. Especially for some thin structures and sharp edges, our method shows better performance than the current state-of-the-art methods. Furthermore, it has a strong adaptability to point clouds of different densities.
期刊介绍:
The International Journal of Computer Vision (IJCV) serves as a platform for sharing new research findings in the rapidly growing field of computer vision. It publishes 12 issues annually and presents high-quality, original contributions to the science and engineering of computer vision. The journal encompasses various types of articles to cater to different research outputs.
Regular articles, which span up to 25 journal pages, focus on significant technical advancements that are of broad interest to the field. These articles showcase substantial progress in computer vision.
Short articles, limited to 10 pages, offer a swift publication path for novel research outcomes. They provide a quicker means for sharing new findings with the computer vision community.
Survey articles, comprising up to 30 pages, offer critical evaluations of the current state of the art in computer vision or offer tutorial presentations of relevant topics. These articles provide comprehensive and insightful overviews of specific subject areas.
In addition to technical articles, the journal also includes book reviews, position papers, and editorials by prominent scientific figures. These contributions serve to complement the technical content and provide valuable perspectives.
The journal encourages authors to include supplementary material online, such as images, video sequences, data sets, and software. This additional material enhances the understanding and reproducibility of the published research.
Overall, the International Journal of Computer Vision is a comprehensive publication that caters to researchers in this rapidly growing field. It covers a range of article types, offers additional online resources, and facilitates the dissemination of impactful research.