A Mutual Supervision Framework for Referring Expression Segmentation and Generation

IF 11.6 2区 计算机科学 Q1 COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE International Journal of Computer Vision Pub Date : 2025-01-23 DOI:10.1007/s11263-024-02325-y
Shijia Huang, Feng Li, Hao Zhang, Shilong Liu, Lei Zhang, Liwei Wang
{"title":"A Mutual Supervision Framework for Referring Expression Segmentation and Generation","authors":"Shijia Huang, Feng Li, Hao Zhang, Shilong Liu, Lei Zhang, Liwei Wang","doi":"10.1007/s11263-024-02325-y","DOIUrl":null,"url":null,"abstract":"<p>Reference Expression Segmentation (RES) and Reference Expression Generation (REG) are mutually inverse tasks that can be naturally jointly trained. Though recent work has explored such joint training, the mechanism of how RES and REG can benefit each other is still unclear. In this paper, we propose a mutual supervision framework that enables two tasks to improve each other. Our mutual supervision contains two directions. On the one hand, Disambiguation Supervision leverages the expression unambiguity measurement provided by RES to enhance the language generation of REG. On the other hand, Generation Supervision uses expressions automatically generated by REG to scale up the training of RES. Such mutual supervision effectively improves two tasks by solving their bottleneck problems. Extensive experiments show that our approach significantly outperforms all existing methods on REG and RES tasks under the same setting, and detailed ablation studies demonstrate the effectiveness of all components in our framework.\n</p>","PeriodicalId":13752,"journal":{"name":"International Journal of Computer Vision","volume":"11 1","pages":""},"PeriodicalIF":11.6000,"publicationDate":"2025-01-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Computer Vision","FirstCategoryId":"94","ListUrlMain":"https://doi.org/10.1007/s11263-024-02325-y","RegionNum":2,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE","Score":null,"Total":0}
引用次数: 0

Abstract

Reference Expression Segmentation (RES) and Reference Expression Generation (REG) are mutually inverse tasks that can be naturally jointly trained. Though recent work has explored such joint training, the mechanism of how RES and REG can benefit each other is still unclear. In this paper, we propose a mutual supervision framework that enables two tasks to improve each other. Our mutual supervision contains two directions. On the one hand, Disambiguation Supervision leverages the expression unambiguity measurement provided by RES to enhance the language generation of REG. On the other hand, Generation Supervision uses expressions automatically generated by REG to scale up the training of RES. Such mutual supervision effectively improves two tasks by solving their bottleneck problems. Extensive experiments show that our approach significantly outperforms all existing methods on REG and RES tasks under the same setting, and detailed ablation studies demonstrate the effectiveness of all components in our framework.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
引用表达式分割与生成的相互监督框架
参考表达式分割(RES)和参考表达式生成(REG)是相互对立的任务,可以自然地联合训练。虽然最近的工作已经探索了这种联合训练,但RES和REG如何相互受益的机制仍不清楚。在本文中,我们提出了一个相互监督框架,使两个任务能够相互改进。我们的相互监督有两个方向。消歧监督一方面利用正则表达式提供的表达无歧义度量来增强正则表达式的语言生成。另一方面,生成监督使用REG自动生成的表达式来扩大res的训练规模,这种相互监督通过解决瓶颈问题有效地提高了两项任务。大量实验表明,在相同设置下,我们的方法在REG和RES任务上明显优于所有现有方法,详细的消融研究证明了我们框架中所有组件的有效性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
International Journal of Computer Vision
International Journal of Computer Vision 工程技术-计算机:人工智能
CiteScore
29.80
自引率
2.10%
发文量
163
审稿时长
6 months
期刊介绍: The International Journal of Computer Vision (IJCV) serves as a platform for sharing new research findings in the rapidly growing field of computer vision. It publishes 12 issues annually and presents high-quality, original contributions to the science and engineering of computer vision. The journal encompasses various types of articles to cater to different research outputs. Regular articles, which span up to 25 journal pages, focus on significant technical advancements that are of broad interest to the field. These articles showcase substantial progress in computer vision. Short articles, limited to 10 pages, offer a swift publication path for novel research outcomes. They provide a quicker means for sharing new findings with the computer vision community. Survey articles, comprising up to 30 pages, offer critical evaluations of the current state of the art in computer vision or offer tutorial presentations of relevant topics. These articles provide comprehensive and insightful overviews of specific subject areas. In addition to technical articles, the journal also includes book reviews, position papers, and editorials by prominent scientific figures. These contributions serve to complement the technical content and provide valuable perspectives. The journal encourages authors to include supplementary material online, such as images, video sequences, data sets, and software. This additional material enhances the understanding and reproducibility of the published research. Overall, the International Journal of Computer Vision is a comprehensive publication that caters to researchers in this rapidly growing field. It covers a range of article types, offers additional online resources, and facilitates the dissemination of impactful research.
期刊最新文献
SeaFormer++: Squeeze-Enhanced Axial Transformer for Mobile Visual Recognition DeepFake-Adapter: Dual-Level Adapter for DeepFake Detection MoonShot: Towards Controllable Video Generation and Editing with Motion-Aware Multimodal Conditions A Mutual Supervision Framework for Referring Expression Segmentation and Generation GL-MCM: Global and Local Maximum Concept Matching for Zero-Shot Out-of-Distribution Detection
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1