R. Blaine McCleskey, Robert L. Runkel, Sheila F. Murphy, David A. Roth
{"title":"Stream Discharge Determinations Using Slug Additions and Specific Conductance","authors":"R. Blaine McCleskey, Robert L. Runkel, Sheila F. Murphy, David A. Roth","doi":"10.1029/2024wr037771","DOIUrl":null,"url":null,"abstract":"Stream discharge is often determined by wading the stream and measuring the point velocity at fixed widths and depths. However, there are conditions when wading measurements are not safe or the measurements are poor because of high turbulence, rocky streambeds, non-standard velocity distributions, shallow or sheet flow, aquatic plants, or inaccessibility due to ice. Under these conditions, it is often preferable to determine discharge using salt slug addition and downstream measurement of salt concentration with time. A new method for determining stream discharge using specific conductance as a surrogate for salt concentrations is presented. The method adapts an approach that accurately calculates the specific conductance by utilizing ionic molal conductivities to determine the concentration of salt. The method was applied at four mountainous stream sites where a total of twenty-nine slug-additions were performed. The discharge determined from the new method was compared to four alternative methods including discharge from continuous injection, slug addition with discrete sample calibration, wading measurements with velocity measurement, and a stream gage. The discharge ranged from 21.5 to 778 L/s and the median difference between the new method and the traditional methods was −0.01%. Additionally, the p-value (0.75) determined from a paired <i>t</i>-test indicates that there is no significant difference between the discharge determined from the new and alternative discharge methods. The primary advantage of the new method is that it obviates the need to collect and analyze discrete samples to accurately quantify the specific conductance-salt surrogate relationship, allowing for rapid, low-cost determination of discharge.","PeriodicalId":23799,"journal":{"name":"Water Resources Research","volume":"48 1","pages":""},"PeriodicalIF":4.6000,"publicationDate":"2025-01-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Water Resources Research","FirstCategoryId":"89","ListUrlMain":"https://doi.org/10.1029/2024wr037771","RegionNum":1,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENVIRONMENTAL SCIENCES","Score":null,"Total":0}
引用次数: 0
Abstract
Stream discharge is often determined by wading the stream and measuring the point velocity at fixed widths and depths. However, there are conditions when wading measurements are not safe or the measurements are poor because of high turbulence, rocky streambeds, non-standard velocity distributions, shallow or sheet flow, aquatic plants, or inaccessibility due to ice. Under these conditions, it is often preferable to determine discharge using salt slug addition and downstream measurement of salt concentration with time. A new method for determining stream discharge using specific conductance as a surrogate for salt concentrations is presented. The method adapts an approach that accurately calculates the specific conductance by utilizing ionic molal conductivities to determine the concentration of salt. The method was applied at four mountainous stream sites where a total of twenty-nine slug-additions were performed. The discharge determined from the new method was compared to four alternative methods including discharge from continuous injection, slug addition with discrete sample calibration, wading measurements with velocity measurement, and a stream gage. The discharge ranged from 21.5 to 778 L/s and the median difference between the new method and the traditional methods was −0.01%. Additionally, the p-value (0.75) determined from a paired t-test indicates that there is no significant difference between the discharge determined from the new and alternative discharge methods. The primary advantage of the new method is that it obviates the need to collect and analyze discrete samples to accurately quantify the specific conductance-salt surrogate relationship, allowing for rapid, low-cost determination of discharge.
期刊介绍:
Water Resources Research (WRR) is an interdisciplinary journal that focuses on hydrology and water resources. It publishes original research in the natural and social sciences of water. It emphasizes the role of water in the Earth system, including physical, chemical, biological, and ecological processes in water resources research and management, including social, policy, and public health implications. It encompasses observational, experimental, theoretical, analytical, numerical, and data-driven approaches that advance the science of water and its management. Submissions are evaluated for their novelty, accuracy, significance, and broader implications of the findings.