What Impact Does Net Zero Action on Road Transport and Building Heating Have on Exposure to UK Air Pollution?

IF 10.8 1区 环境科学与生态学 Q1 ENGINEERING, ENVIRONMENTAL 环境科学与技术 Pub Date : 2025-01-10 DOI:10.1021/acs.est.4c05601
Nosha Assareh, Andrew Beddows, Gregor Stewart, Mike Holland, Daniela Fecht, Heather Walton, Dimitris Evangelopoulos, Dylan Wood, Tuan Vu, David Dajnak, Christian Brand, Sean David Beevers
{"title":"What Impact Does Net Zero Action on Road Transport and Building Heating Have on Exposure to UK Air Pollution?","authors":"Nosha Assareh, Andrew Beddows, Gregor Stewart, Mike Holland, Daniela Fecht, Heather Walton, Dimitris Evangelopoulos, Dylan Wood, Tuan Vu, David Dajnak, Christian Brand, Sean David Beevers","doi":"10.1021/acs.est.4c05601","DOIUrl":null,"url":null,"abstract":"This study explores the cobenefits of reduced nitrogen dioxide (NO<sub>2</sub>), ozone (O<sub>3</sub>), and particulate matter (PM), through net zero (NZ) climate policy in the UK. Two alternative NZ scenarios, the balanced net zero (BNZP) and widespread innovation (WI) pathways, from the UK Climate Change Committee’s Sixth Carbon Budget, were examined using a chemical transport model (CTM). Under the UK existing policy, Business as Usual (BAU), reductions in NO<sub>2</sub> and PM were predicted by 2030 due to new vehicle technologies but plateau by 2040. The BNZP and WI scenarios show further reductions particularly by 2040, driven by accelerated electric vehicle (EV) uptake and low-carbon heating in buildings, with the building contribution to PM reduction being 2–3 times greater than road transport. The results demonstrate that the NZ transition to EVs (cars and vans) reduces both exhaust and nonexhaust emissions, as well as reducing traffic volumes. O<sub>3</sub> trends are complex with a small overall increase by 2030 and a decrease by 2040. Although uncertain, 2050 predictions of BNZP showed important additional air pollution benefits. Our findings highlight the efficacy of NZ strategies, providing insights for UK and international policymakers interested in the air pollution cobenefits of climate policy.","PeriodicalId":36,"journal":{"name":"环境科学与技术","volume":"25 1","pages":""},"PeriodicalIF":10.8000,"publicationDate":"2025-01-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"环境科学与技术","FirstCategoryId":"1","ListUrlMain":"https://doi.org/10.1021/acs.est.4c05601","RegionNum":1,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, ENVIRONMENTAL","Score":null,"Total":0}
引用次数: 0

Abstract

This study explores the cobenefits of reduced nitrogen dioxide (NO2), ozone (O3), and particulate matter (PM), through net zero (NZ) climate policy in the UK. Two alternative NZ scenarios, the balanced net zero (BNZP) and widespread innovation (WI) pathways, from the UK Climate Change Committee’s Sixth Carbon Budget, were examined using a chemical transport model (CTM). Under the UK existing policy, Business as Usual (BAU), reductions in NO2 and PM were predicted by 2030 due to new vehicle technologies but plateau by 2040. The BNZP and WI scenarios show further reductions particularly by 2040, driven by accelerated electric vehicle (EV) uptake and low-carbon heating in buildings, with the building contribution to PM reduction being 2–3 times greater than road transport. The results demonstrate that the NZ transition to EVs (cars and vans) reduces both exhaust and nonexhaust emissions, as well as reducing traffic volumes. O3 trends are complex with a small overall increase by 2030 and a decrease by 2040. Although uncertain, 2050 predictions of BNZP showed important additional air pollution benefits. Our findings highlight the efficacy of NZ strategies, providing insights for UK and international policymakers interested in the air pollution cobenefits of climate policy.

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
求助全文
约1分钟内获得全文 去求助
来源期刊
环境科学与技术
环境科学与技术 环境科学-工程:环境
CiteScore
17.50
自引率
9.60%
发文量
12359
审稿时长
2.8 months
期刊介绍: Environmental Science & Technology (ES&T) is a co-sponsored academic and technical magazine by the Hubei Provincial Environmental Protection Bureau and the Hubei Provincial Academy of Environmental Sciences. Environmental Science & Technology (ES&T) holds the status of Chinese core journals, scientific papers source journals of China, Chinese Science Citation Database source journals, and Chinese Academic Journal Comprehensive Evaluation Database source journals. This publication focuses on the academic field of environmental protection, featuring articles related to environmental protection and technical advancements.
期刊最新文献
Safe Production of Rice (Oryza sativa L.) in Arsenic-Contaminated Soil: a Remedial Strategy using Micro-Nanostructured Bone Biochar Per- and Polyfluoroalkyl Substances and Female Health Concern: Gender-based Accumulation Differences, Adverse Outcomes, and Mechanisms Hepatotoxicity of Three Common Liquid Crystal Monomers in Mus musculus: Differentiation of Actions Across Different Receptors and Pathways Engineering Subnanometric Electronic Interaction between Ru and Mn in Zeolite Boosts Catalytic Oxidation of Dichloromethane Implications of Pyrolytic Gas Dynamic Evolution on Dissolved Black Carbon Formed During Production of Biochar from Nitrogen-Rich Feedstock
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1