Adaptive Robust Formation Tracking Control for Traffic Cone Robots Under Uncertain Disturbances: With Leakage and Dead Zone Types

IF 2.9 4区 工程技术 Q1 MULTIDISCIPLINARY SCIENCES Advanced Theory and Simulations Pub Date : 2025-01-10 DOI:10.1002/adts.202401247
Jiale Zhang, Chuanwei Zhang, Shengjie Jiao, Peilin Qin, Meng Wei, Gaoqi Lian
{"title":"Adaptive Robust Formation Tracking Control for Traffic Cone Robots Under Uncertain Disturbances: With Leakage and Dead Zone Types","authors":"Jiale Zhang,&nbsp;Chuanwei Zhang,&nbsp;Shengjie Jiao,&nbsp;Peilin Qin,&nbsp;Meng Wei,&nbsp;Gaoqi Lian","doi":"10.1002/adts.202401247","DOIUrl":null,"url":null,"abstract":"<p>Traffic cones, as indispensable safety facilities for road maintenance, play a crucial role in directing traffic flow and ensuring construction safety. This study addresses the challenge of adaptive robust formation tracking control for uncertain traffic cone robots (TCRs). Based on the Udwadia–Kalaba method, the kinematic constraints of the TCRs are designed by the artificial potential function. Those constraints are considered as the control objectives realized by robust control. The uncertainty of the TCRs in this study includes matching and mismatching components. To address matching uncertainties, adaptive parameters incorporating dead-zone and leakage terms are introduced, enabling precise real-time estimation of uncertainty dynamics. For mismatching uncertainties, a geometric decomposition approach is employed, effectively isolating them in a subspace orthogonal to the formation tracking range space. The proposed system is validated through extensive simulations and real-world experiments, demonstrating its robustness and practical effectiveness in addressing the stated challenges.</p>","PeriodicalId":7219,"journal":{"name":"Advanced Theory and Simulations","volume":"8 4","pages":""},"PeriodicalIF":2.9000,"publicationDate":"2025-01-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advanced Theory and Simulations","FirstCategoryId":"5","ListUrlMain":"https://advanced.onlinelibrary.wiley.com/doi/10.1002/adts.202401247","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MULTIDISCIPLINARY SCIENCES","Score":null,"Total":0}
引用次数: 0

Abstract

Traffic cones, as indispensable safety facilities for road maintenance, play a crucial role in directing traffic flow and ensuring construction safety. This study addresses the challenge of adaptive robust formation tracking control for uncertain traffic cone robots (TCRs). Based on the Udwadia–Kalaba method, the kinematic constraints of the TCRs are designed by the artificial potential function. Those constraints are considered as the control objectives realized by robust control. The uncertainty of the TCRs in this study includes matching and mismatching components. To address matching uncertainties, adaptive parameters incorporating dead-zone and leakage terms are introduced, enabling precise real-time estimation of uncertainty dynamics. For mismatching uncertainties, a geometric decomposition approach is employed, effectively isolating them in a subspace orthogonal to the formation tracking range space. The proposed system is validated through extensive simulations and real-world experiments, demonstrating its robustness and practical effectiveness in addressing the stated challenges.

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
不确定干扰下交通锥机器人的自适应鲁棒编队跟踪控制:带泄漏和死区类型
交通锥作为道路养护不可缺少的安全设施,在引导交通流量、保障施工安全方面发挥着至关重要的作用。针对不确定交通锥机器人(tcr)的自适应鲁棒队列跟踪控制问题进行了研究。基于Udwadia-Kalaba方法,利用人工势函数设计了tcr的运动约束。将这些约束条件作为鲁棒控制实现的控制目标。本研究中tcr的不确定度包括匹配和不匹配成分。为了解决匹配的不确定性,引入了包含死区和泄漏项的自适应参数,实现了不确定性动态的精确实时估计。对于不匹配的不确定性,采用几何分解方法,有效地将其隔离在与地层跟踪距离空间正交的子空间中。通过大量的仿真和真实世界的实验验证了所提出的系统,证明了它在解决所述挑战方面的鲁棒性和实际有效性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Advanced Theory and Simulations
Advanced Theory and Simulations Multidisciplinary-Multidisciplinary
CiteScore
5.50
自引率
3.00%
发文量
221
期刊介绍: Advanced Theory and Simulations is an interdisciplinary, international, English-language journal that publishes high-quality scientific results focusing on the development and application of theoretical methods, modeling and simulation approaches in all natural science and medicine areas, including: materials, chemistry, condensed matter physics engineering, energy life science, biology, medicine atmospheric/environmental science, climate science planetary science, astronomy, cosmology method development, numerical methods, statistics
期刊最新文献
Front Cover: High‐Throughput Calculation and Machine Learning‐Assisted Prediction of the Mechanical Properties of Refractory Multi‐Principal Element Alloys (Adv. Theory Simul. 1/2026) Issue Information (Adv. Theory Simul. 1/2026) Energetics and Kinetics of 2NO • +O 2 →2NO 2 • Reaction: A 90 Years Old Problem Single‐Mn‐Atom Chains Anchored on Carbon Nanotubes for Efficient Naphthalene Hydrocracking Building Metal–Graphene Supercells: Python Tool for Lattice Matching and DFT Validation
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1