Facile Generation of Cyanoselenocysteine as a Vibrational Label for Measuring Protein Dynamics on Longer Time Scales by 2D IR Spectroscopy

IF 6.7 1区 化学 Q1 CHEMISTRY, ANALYTICAL Analytical Chemistry Pub Date : 2025-01-10 DOI:10.1021/acs.analchem.4c04689
Noor Ali, Swapnil Singh, Chaitrali Sengupta, Shashwati Paul, Megan C. Thielges
{"title":"Facile Generation of Cyanoselenocysteine as a Vibrational Label for Measuring Protein Dynamics on Longer Time Scales by 2D IR Spectroscopy","authors":"Noor Ali, Swapnil Singh, Chaitrali Sengupta, Shashwati Paul, Megan C. Thielges","doi":"10.1021/acs.analchem.4c04689","DOIUrl":null,"url":null,"abstract":"Two-dimensional infrared (2D IR) spectroscopy is a powerful technique for measuring molecular heterogeneity and dynamics with a high spatiotemporal resolution. The methods can be applied to characterize specific residues of proteins by incorporating frequency-resolved vibrational labels. However, the time scale of dynamics that 2D IR spectroscopy can measure is limited by the vibrational label’s excited-state lifetime due to the decay of 2D IR absorption bands. To extend this time scale, vibrational labels with longer lifetimes are sought. An effective approach to inhibiting intramolecular energy relaxation is to isolate the vibration from the rest of the molecule by inserting a heavy atom bridge. Although this strategy has been demonstrated through the generation of functionalized amino acids, a straightforward route to their selective incorporation into proteins is often unclear. A facile approach for the attachment of a cyano group at cysteine to generate a thiocyanate has contributed to its adoption as a vibrational label of proteins. We demonstrate that an analogous route can be used for introducing cyanoselenocysteine to generate a selenocyanate vibrational label containing a heavier bridge atom. We confirm by infrared pump–probe and 2D IR spectroscopy longer vibrational lifetimes of 100–250 ps, depending on the solvent, which enable the collection of 2D IR spectra to measure frequency dynamics on longer time scales.","PeriodicalId":27,"journal":{"name":"Analytical Chemistry","volume":"22 1","pages":""},"PeriodicalIF":6.7000,"publicationDate":"2025-01-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Analytical Chemistry","FirstCategoryId":"92","ListUrlMain":"https://doi.org/10.1021/acs.analchem.4c04689","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, ANALYTICAL","Score":null,"Total":0}
引用次数: 0

Abstract

Two-dimensional infrared (2D IR) spectroscopy is a powerful technique for measuring molecular heterogeneity and dynamics with a high spatiotemporal resolution. The methods can be applied to characterize specific residues of proteins by incorporating frequency-resolved vibrational labels. However, the time scale of dynamics that 2D IR spectroscopy can measure is limited by the vibrational label’s excited-state lifetime due to the decay of 2D IR absorption bands. To extend this time scale, vibrational labels with longer lifetimes are sought. An effective approach to inhibiting intramolecular energy relaxation is to isolate the vibration from the rest of the molecule by inserting a heavy atom bridge. Although this strategy has been demonstrated through the generation of functionalized amino acids, a straightforward route to their selective incorporation into proteins is often unclear. A facile approach for the attachment of a cyano group at cysteine to generate a thiocyanate has contributed to its adoption as a vibrational label of proteins. We demonstrate that an analogous route can be used for introducing cyanoselenocysteine to generate a selenocyanate vibrational label containing a heavier bridge atom. We confirm by infrared pump–probe and 2D IR spectroscopy longer vibrational lifetimes of 100–250 ps, depending on the solvent, which enable the collection of 2D IR spectra to measure frequency dynamics on longer time scales.

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
求助全文
约1分钟内获得全文 去求助
来源期刊
Analytical Chemistry
Analytical Chemistry 化学-分析化学
CiteScore
12.10
自引率
12.20%
发文量
1949
审稿时长
1.4 months
期刊介绍: Analytical Chemistry, a peer-reviewed research journal, focuses on disseminating new and original knowledge across all branches of analytical chemistry. Fundamental articles may explore general principles of chemical measurement science and need not directly address existing or potential analytical methodology. They can be entirely theoretical or report experimental results. Contributions may cover various phases of analytical operations, including sampling, bioanalysis, electrochemistry, mass spectrometry, microscale and nanoscale systems, environmental analysis, separations, spectroscopy, chemical reactions and selectivity, instrumentation, imaging, surface analysis, and data processing. Papers discussing known analytical methods should present a significant, original application of the method, a notable improvement, or results on an important analyte.
期刊最新文献
Your Blood is Out for Delivery: Considerations of Shipping Time and Temperature on Degradation of RNA from Stabilized Whole Blood Two-Step Acoustic Cell Separation Based on Cell Size and Acoustic Impedance─toward Isolation of Viable Circulating Tumor Cells NIRFluor: A Deep Learning Platform for Rapid Screening of Small Molecule Near-Infrared Fluorophores with Desired Optical Properties Integrating C–H Information to Improve Machine Learning Classification Models for Microplastic Identification from Raman Spectra A Dual-Mode Colorimetric and Fluorescence Biosensor Based on a Nucleic Acid Multiplexing Platform for the Detection of Listeria monocytogenes
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1