Development of a Novel Magnesium Alloy with High Degradation Resistance and Osteo/Angiogenesis Activity Through Scandium-enhanced Growth of Passivation Film

IF 18.5 1区 材料科学 Q1 CHEMISTRY, MULTIDISCIPLINARY Advanced Functional Materials Pub Date : 2025-01-10 DOI:10.1002/adfm.202414264
Zhengguang Wang, Jinge Liu, Shuai Han, Bingchuan Liu, Jiedong Wang, Shengxin Zeng, Chaoxin Wang, Shuyuan Min, Yuanyu Hu, Peng Bo, Qian Wang, Haoyue Li, Dazhi Liu, Peng Wen, Yufeng Zheng, Yun Tian
{"title":"Development of a Novel Magnesium Alloy with High Degradation Resistance and Osteo/Angiogenesis Activity Through Scandium-enhanced Growth of Passivation Film","authors":"Zhengguang Wang, Jinge Liu, Shuai Han, Bingchuan Liu, Jiedong Wang, Shengxin Zeng, Chaoxin Wang, Shuyuan Min, Yuanyu Hu, Peng Bo, Qian Wang, Haoyue Li, Dazhi Liu, Peng Wen, Yufeng Zheng, Yun Tian","doi":"10.1002/adfm.202414264","DOIUrl":null,"url":null,"abstract":"Addressing the challenge of balancing rapid degradation and insufficient bio-regenerative capabilities in biodegradable magnesium (Mg) alloys for bone repair is a significant endeavor. In this study, the influence of Scandium (Sc) content on the microstructure, strength, degradation, cytotoxicity, angiogenesis, and osteogenesis of Mg-4Yttrium(Y)-xSc alloy system is investigated, and a novel alloy Mg-4Y-2.25Sc (wt.%) that significantly inhibits degradation and promotes bone regeneration is successfully developed. This achievement is contributed to the combination of the alloying and high-temperature oxidation (HTO) treatment, guided by a thermodynamic calculation model. The performance of the alloy notably surpasses that of the widely used biodegradable WE43 alloy. At the microstructural level, a thin and dense protective film of Y<sub>2</sub>O<sub>3</sub>/Sc<sub>2</sub>O<sub>3</sub> is introduced to form a passivation effect. The synergetic release of Mg and Sc ions significantly promotes angiogenesis and osteogenesis. In vivo results verify that Mg-4Y-2.25Sc implants promote osseointegration of implants during the bone healing cycle. In summary, the alloying system treated by HTO effectively modulates the degradation rate of Mg alloys without complex surface modification, providing a promising bone-repairing material for successful implantation.","PeriodicalId":112,"journal":{"name":"Advanced Functional Materials","volume":"25 1","pages":""},"PeriodicalIF":18.5000,"publicationDate":"2025-01-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advanced Functional Materials","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1002/adfm.202414264","RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

Addressing the challenge of balancing rapid degradation and insufficient bio-regenerative capabilities in biodegradable magnesium (Mg) alloys for bone repair is a significant endeavor. In this study, the influence of Scandium (Sc) content on the microstructure, strength, degradation, cytotoxicity, angiogenesis, and osteogenesis of Mg-4Yttrium(Y)-xSc alloy system is investigated, and a novel alloy Mg-4Y-2.25Sc (wt.%) that significantly inhibits degradation and promotes bone regeneration is successfully developed. This achievement is contributed to the combination of the alloying and high-temperature oxidation (HTO) treatment, guided by a thermodynamic calculation model. The performance of the alloy notably surpasses that of the widely used biodegradable WE43 alloy. At the microstructural level, a thin and dense protective film of Y2O3/Sc2O3 is introduced to form a passivation effect. The synergetic release of Mg and Sc ions significantly promotes angiogenesis and osteogenesis. In vivo results verify that Mg-4Y-2.25Sc implants promote osseointegration of implants during the bone healing cycle. In summary, the alloying system treated by HTO effectively modulates the degradation rate of Mg alloys without complex surface modification, providing a promising bone-repairing material for successful implantation.

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
通过钪增强钝化膜生长制备具有高降解性和成骨/血管生成活性的新型镁合金
解决生物可降解镁合金在骨修复中的快速降解和生物再生能力不足之间的平衡是一个重要的挑战。本研究研究了钪(Sc)含量对mg - 4钇(Y)-xSc合金体系微观结构、强度、降解、细胞毒性、血管生成和成骨的影响,成功研制出一种显著抑制降解和促进骨再生的新型合金Mg-4Y-2.25Sc (wt.%)。这一成果是在热力学计算模型的指导下,合金化和高温氧化(HTO)处理相结合的结果。该合金的性能明显优于广泛使用的可生物降解的WE43合金。在微观结构层面,引入一层薄而致密的Y2O3/Sc2O3保护膜,形成钝化效果。Mg和Sc离子的协同释放显著促进血管生成和骨生成。体内实验结果证实,Mg-4Y-2.25Sc种植体在骨愈合周期中促进了种植体的骨整合。综上所述,经HTO处理的合金体系可以有效调节镁合金的降解速率,无需复杂的表面修饰,为成功植入提供了一种有前景的骨修复材料。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Advanced Functional Materials
Advanced Functional Materials 工程技术-材料科学:综合
CiteScore
29.50
自引率
4.20%
发文量
2086
审稿时长
2.1 months
期刊介绍: Firmly established as a top-tier materials science journal, Advanced Functional Materials reports breakthrough research in all aspects of materials science, including nanotechnology, chemistry, physics, and biology every week. Advanced Functional Materials is known for its rapid and fair peer review, quality content, and high impact, making it the first choice of the international materials science community.
期刊最新文献
Oligomeric Carbazole Phosphonic Acid as Hole-Transporting Layer for Organic Solar Cells With Efficiency of 19.63% Triphenylamine-Substituted Nile Red Derivatives with Efficient Reactive Oxygen Species Generation for Robust and Broad-Spectrum Antimicrobial Photodynamic Therapy and Abscess Wound Healing Cyano-Cyclotrimerization Strategy for Constructing Bi-Functional Acid-Base Sites in Covalent Organic Frameworks for Achieving Synergistic-Optimization of Catalytic Activity and Rapid-Recyclability in CO2 Cycloaddition Hydrophilic Shape-Memory Nanozyme Aerogel for the Development of a Reusable and Signal-Amplified Sensor 3D Interconnected Boron Nitride Macrostructures and Derived Composites for Thermal Energy Regulation
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1