M. de Wit;L. Gottardi;K. Nagayoshi;E. Taralli;D. Vaccaro;K. Ravensberg;M.P. Bruijn;J. van der Kuur;J.R. Gao;J.W.A. den Herder
{"title":"Transition Edge Sensors for DC Operation and Low Magnetic Field Sensitivity","authors":"M. de Wit;L. Gottardi;K. Nagayoshi;E. Taralli;D. Vaccaro;K. Ravensberg;M.P. Bruijn;J. van der Kuur;J.R. Gao;J.W.A. den Herder","doi":"10.1109/TASC.2024.3521900","DOIUrl":null,"url":null,"abstract":"The X-ray Integral Field Unit (X-IFU) is an imaging spectrometer based on a large array of Transition Edge Sensors (TES) measured using Time Domain Multiplexing (TDM). For the development of a backup detector array, we have designed and realized a cryogenic test setup capable of measuring 9 detectors in a single cooldown under DC bias. We have used this setup to study a small selection of low aspect ratio TES designs, intended to have a low normal resistance suitable for TDM readout. In this work we show how the different designs are affected by magnetic fields. We do this by presenting the impact on the transition shape, detector integrated Noise Equivalent Power (NEP), and sensitivity of the energy scale calibration. We find, in agreement with previous studies, that reducing the width of the TES bilayer greatly improves the detector resilience to magnetic fields, potentially by several orders of magnitude.","PeriodicalId":13104,"journal":{"name":"IEEE Transactions on Applied Superconductivity","volume":"35 5","pages":"1-5"},"PeriodicalIF":1.7000,"publicationDate":"2024-12-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Transactions on Applied Superconductivity","FirstCategoryId":"101","ListUrlMain":"https://ieeexplore.ieee.org/document/10813421/","RegionNum":3,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
引用次数: 0
Abstract
The X-ray Integral Field Unit (X-IFU) is an imaging spectrometer based on a large array of Transition Edge Sensors (TES) measured using Time Domain Multiplexing (TDM). For the development of a backup detector array, we have designed and realized a cryogenic test setup capable of measuring 9 detectors in a single cooldown under DC bias. We have used this setup to study a small selection of low aspect ratio TES designs, intended to have a low normal resistance suitable for TDM readout. In this work we show how the different designs are affected by magnetic fields. We do this by presenting the impact on the transition shape, detector integrated Noise Equivalent Power (NEP), and sensitivity of the energy scale calibration. We find, in agreement with previous studies, that reducing the width of the TES bilayer greatly improves the detector resilience to magnetic fields, potentially by several orders of magnitude.
期刊介绍:
IEEE Transactions on Applied Superconductivity (TAS) contains articles on the applications of superconductivity and other relevant technology. Electronic applications include analog and digital circuits employing thin films and active devices such as Josephson junctions. Large scale applications include magnets for power applications such as motors and generators, for magnetic resonance, for accelerators, and cable applications such as power transmission.