{"title":"Unconstrained Fuzzy C-Means Based on Entropy Regularization: An Equivalent Model","authors":"Feiping Nie;Runxin Zhang;Yu Duan;Rong Wang","doi":"10.1109/TKDE.2024.3516085","DOIUrl":null,"url":null,"abstract":"Fuzzy c-means based on entropy regularization (FCER) is a commonly used machine learning algorithm that uses maximum entropy as the regularization term to realize fuzzy clustering. However, this model has many constraints and is challenging to optimize directly. During the solution process, the membership matrix and cluster centers are alternately optimized, easily converging to poor local solutions, limiting the clustering performance. In this paper, we start with the optimization model and propose an unconstrained fuzzy clustering model (UFCER) equivalent to FCER, which reduces the size of optimization variables from \n<inline-formula><tex-math>$(n+d)\\times c$</tex-math></inline-formula>\n to \n<inline-formula><tex-math>$d\\times c$</tex-math></inline-formula>\n. More importantly, there is no need to calculate the membership matrix during the optimization process iteratively. The time complexity is only linear, and the convergence speed is fast. We conduct extensive experiments on real datasets. The comparison of objective function value and clustering performance fully demonstrates that under the same initialization, our proposed algorithm can converge to smaller local minimums and get better clustering performance.","PeriodicalId":13496,"journal":{"name":"IEEE Transactions on Knowledge and Data Engineering","volume":"37 2","pages":"979-990"},"PeriodicalIF":8.9000,"publicationDate":"2024-12-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Transactions on Knowledge and Data Engineering","FirstCategoryId":"94","ListUrlMain":"https://ieeexplore.ieee.org/document/10795260/","RegionNum":2,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE","Score":null,"Total":0}
引用次数: 0
Abstract
Fuzzy c-means based on entropy regularization (FCER) is a commonly used machine learning algorithm that uses maximum entropy as the regularization term to realize fuzzy clustering. However, this model has many constraints and is challenging to optimize directly. During the solution process, the membership matrix and cluster centers are alternately optimized, easily converging to poor local solutions, limiting the clustering performance. In this paper, we start with the optimization model and propose an unconstrained fuzzy clustering model (UFCER) equivalent to FCER, which reduces the size of optimization variables from
$(n+d)\times c$
to
$d\times c$
. More importantly, there is no need to calculate the membership matrix during the optimization process iteratively. The time complexity is only linear, and the convergence speed is fast. We conduct extensive experiments on real datasets. The comparison of objective function value and clustering performance fully demonstrates that under the same initialization, our proposed algorithm can converge to smaller local minimums and get better clustering performance.
期刊介绍:
The IEEE Transactions on Knowledge and Data Engineering encompasses knowledge and data engineering aspects within computer science, artificial intelligence, electrical engineering, computer engineering, and related fields. It provides an interdisciplinary platform for disseminating new developments in knowledge and data engineering and explores the practicality of these concepts in both hardware and software. Specific areas covered include knowledge-based and expert systems, AI techniques for knowledge and data management, tools, and methodologies, distributed processing, real-time systems, architectures, data management practices, database design, query languages, security, fault tolerance, statistical databases, algorithms, performance evaluation, and applications.