Separation of Plasma Species for Investigating the Impact of Hydrogen Plasmas on the Work Function of Caesiated Surfaces

IF 2.6 3区 物理与天体物理 Q3 ENGINEERING, CHEMICAL Plasma Chemistry and Plasma Processing Pub Date : 2024-12-02 DOI:10.1007/s11090-024-10529-w
A. Heiler, R. Friedl, U. Fantz
{"title":"Separation of Plasma Species for Investigating the Impact of Hydrogen Plasmas on the Work Function of Caesiated Surfaces","authors":"A. Heiler,&nbsp;R. Friedl,&nbsp;U. Fantz","doi":"10.1007/s11090-024-10529-w","DOIUrl":null,"url":null,"abstract":"<div><p>In negative hydrogen ion sources in situ adsorption of Cs is typically used to generate low work function converter surfaces. The achievement of a temporally stable low work function coating is, however, challenging due to the hydrogen plasma interaction with the surface. Particularly in ion sources for neutral beam injection systems for fusion with pulse durations of minutes to hours temporal instabilities are a major issue and limit the source performance. To clarify the influence of the hydrogen plasma on the converter surface, investigations are performed at an experiment equipped with an absolute work function diagnostic based on the photoelectric effect. Caesiated surfaces are exposed to the full plasma impact by the generation of plasmas in front of the surface as well as to selected plasma species (H atoms, positive ions and VUV/UV photons) from an external plasma source to identify driving mechanisms that lead to surface changes. Depending on the exposure time and initial surface condition, the plasma strongly affects the surface in terms of work function and quantum efficiency (QE). For degraded Cs layers (work function <span>\\(\\ge 3\\)</span> eV) a favorable increase in QE and reduction in work function can be achieved, while for Cs layers with an ultra-low work function of <span>\\(1.2-1.3\\)</span> eV the opposite is true. It is found that each plasma species can influence the Cs layers and that VUV photons lead to a work function increase of ultra-low work function layers. For sufficiently high VUV fluences a severe work function increase by 0.5 eV is given, highlighting the relevance of photochemical processes in the plasma-surface interaction and demonstrating that ultra-low work function layers are not stable in a hydrogen plasma environment.</p></div>","PeriodicalId":734,"journal":{"name":"Plasma Chemistry and Plasma Processing","volume":"45 1","pages":"1 - 20"},"PeriodicalIF":2.6000,"publicationDate":"2024-12-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://link.springer.com/content/pdf/10.1007/s11090-024-10529-w.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Plasma Chemistry and Plasma Processing","FirstCategoryId":"5","ListUrlMain":"https://link.springer.com/article/10.1007/s11090-024-10529-w","RegionNum":3,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENGINEERING, CHEMICAL","Score":null,"Total":0}
引用次数: 0

Abstract

In negative hydrogen ion sources in situ adsorption of Cs is typically used to generate low work function converter surfaces. The achievement of a temporally stable low work function coating is, however, challenging due to the hydrogen plasma interaction with the surface. Particularly in ion sources for neutral beam injection systems for fusion with pulse durations of minutes to hours temporal instabilities are a major issue and limit the source performance. To clarify the influence of the hydrogen plasma on the converter surface, investigations are performed at an experiment equipped with an absolute work function diagnostic based on the photoelectric effect. Caesiated surfaces are exposed to the full plasma impact by the generation of plasmas in front of the surface as well as to selected plasma species (H atoms, positive ions and VUV/UV photons) from an external plasma source to identify driving mechanisms that lead to surface changes. Depending on the exposure time and initial surface condition, the plasma strongly affects the surface in terms of work function and quantum efficiency (QE). For degraded Cs layers (work function \(\ge 3\) eV) a favorable increase in QE and reduction in work function can be achieved, while for Cs layers with an ultra-low work function of \(1.2-1.3\) eV the opposite is true. It is found that each plasma species can influence the Cs layers and that VUV photons lead to a work function increase of ultra-low work function layers. For sufficiently high VUV fluences a severe work function increase by 0.5 eV is given, highlighting the relevance of photochemical processes in the plasma-surface interaction and demonstrating that ultra-low work function layers are not stable in a hydrogen plasma environment.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
分离等离子体以研究氢等离子体对铯表面功函数的影响
在负氢离子源中,Cs的原位吸附通常用于生成低功函数转化器表面。然而,由于氢等离子体与表面的相互作用,实现暂时稳定的低功函数涂层具有挑战性。特别是在中性束注入系统的离子源中,脉冲持续时间为几分钟到几小时,时间不稳定性是一个主要问题,限制了源的性能。为了明确氢等离子体对转炉表面的影响,采用基于光电效应的绝对功函数诊断实验进行了研究。通过在表面前产生等离子体以及来自外部等离子体源的选定等离子体物种(氢原子,正离子和VUV/UV光子),使铯表面暴露于充分的等离子体影响下,以确定导致表面变化的驱动机制。根据暴露时间和初始表面条件的不同,等离子体对表面的功函数和量子效率(QE)有很大的影响。对于退化的Cs层(功函数\(\ge 3\) eV),可以实现良好的QE增加和功函数减小,而对于具有超低功函数\(1.2-1.3\) eV的Cs层,则相反。发现每一种等离子体都能影响Cs层,并且VUV光子导致超低功函数层的功函数增加。对于足够高的VUV影响,给出了0.5 eV的严重功函数增加,突出了等离子体表面相互作用中光化学过程的相关性,并表明超低功函数层在氢等离子体环境中不稳定。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Plasma Chemistry and Plasma Processing
Plasma Chemistry and Plasma Processing 工程技术-工程:化工
CiteScore
5.90
自引率
8.30%
发文量
73
审稿时长
6-12 weeks
期刊介绍: Publishing original papers on fundamental and applied research in plasma chemistry and plasma processing, the scope of this journal includes processing plasmas ranging from non-thermal plasmas to thermal plasmas, and fundamental plasma studies as well as studies of specific plasma applications. Such applications include but are not limited to plasma catalysis, environmental processing including treatment of liquids and gases, biological applications of plasmas including plasma medicine and agriculture, surface modification and deposition, powder and nanostructure synthesis, energy applications including plasma combustion and reforming, resource recovery, coupling of plasmas and electrochemistry, and plasma etching. Studies of chemical kinetics in plasmas, and the interactions of plasmas with surfaces are also solicited. It is essential that submissions include substantial consideration of the role of the plasma, for example, the relevant plasma chemistry, plasma physics or plasma–surface interactions; manuscripts that consider solely the properties of materials or substances processed using a plasma are not within the journal’s scope.
期刊最新文献
Review of Non-Thermal Plasma Technology and Its Potential Impact on Food Crop Seed Types in Plasma Agriculture Plasma and Flow Simulation of the Ion Wind in a Surface Barrier Discharge Used for Gas Conversion Benchmarked by Schlieren Imaging Separation of Plasma Species for Investigating the Impact of Hydrogen Plasmas on the Work Function of Caesiated Surfaces Transient Spark Plasma-Treated L-Cysteine Reduces CCl4-Induced Hepatotoxicity in Rats Perspectives on Coupling Nonthermal Plasma Generated in Gas–Liquid Water Environments with Microbes
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1