Microwave absorption and magnetic properties of LiZnMn ferrites doped with Mg

IF 2.3 4区 材料科学 Q2 MATERIALS SCIENCE, CERAMICS Journal of Sol-Gel Science and Technology Pub Date : 2024-10-31 DOI:10.1007/s10971-024-06594-4
Xueyun Zhou, Jun Wang, Dongsheng Yao
{"title":"Microwave absorption and magnetic properties of LiZnMn ferrites doped with Mg","authors":"Xueyun Zhou,&nbsp;Jun Wang,&nbsp;Dongsheng Yao","doi":"10.1007/s10971-024-06594-4","DOIUrl":null,"url":null,"abstract":"<div><p>Ferrite has been extensively studied due to its wide range of applications. In present work, Li<sub>0.4-0.5<i>x</i></sub>Zn<sub>0.2</sub>Mn<sub>0.1</sub>Mg<sub><i>x</i>-0.1</sub>Fe<sub>2.4-0.5<i>x</i></sub>O<sub>4</sub> (<i>x</i> = 0.1, 0.15, 0.2, 0.25, 0.3) were synthesized by sol-gel auto-combustion method. X-ray diffraction and infrared spectroscopy confirmed the formation of a cubic spinel structure. The lattice constant was found to increase with higher <i>x</i> values, while density, grain size and microstrain decreased correspondingly. The saturation magnetization and coercivity showed slight decreases after Mg doping, whereas the initial permeability slightly increased. The Curie temperature declined from 433 °C at <i>x</i> = 0.1 to 395 °C at <i>x</i> = 0.3. Mg doping also reduced the optimal matching thickness of microwave-absorbing materials to 3 mm. Mg-LiZnMn absorber is lighter in weight than LiZnMn. Notably, the sample with <i>x</i> = 0.15 exhibited excellent absorption characteristics from 8.2 GHz to 13.1 GHz, with a reflection loss (<i>RL</i>) of −32 dB. These findings suggest that an appropriate concentration of Mg doping can enhance the impedance matching of the materials, thereby improving their microwave absorption performance.</p><h3>Graphical Abstract</h3><div><figure><div><div><picture><source><img></source></picture></div><div><p>Adding Mg in LiZnMn ferries can improves the initial permeability (μ<sub>i</sub>) and microwave absorption performance.</p></div></div></figure></div></div>","PeriodicalId":664,"journal":{"name":"Journal of Sol-Gel Science and Technology","volume":"113 1","pages":"243 - 251"},"PeriodicalIF":2.3000,"publicationDate":"2024-10-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Sol-Gel Science and Technology","FirstCategoryId":"88","ListUrlMain":"https://link.springer.com/article/10.1007/s10971-024-06594-4","RegionNum":4,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, CERAMICS","Score":null,"Total":0}
引用次数: 0

Abstract

Ferrite has been extensively studied due to its wide range of applications. In present work, Li0.4-0.5xZn0.2Mn0.1Mgx-0.1Fe2.4-0.5xO4 (x = 0.1, 0.15, 0.2, 0.25, 0.3) were synthesized by sol-gel auto-combustion method. X-ray diffraction and infrared spectroscopy confirmed the formation of a cubic spinel structure. The lattice constant was found to increase with higher x values, while density, grain size and microstrain decreased correspondingly. The saturation magnetization and coercivity showed slight decreases after Mg doping, whereas the initial permeability slightly increased. The Curie temperature declined from 433 °C at x = 0.1 to 395 °C at x = 0.3. Mg doping also reduced the optimal matching thickness of microwave-absorbing materials to 3 mm. Mg-LiZnMn absorber is lighter in weight than LiZnMn. Notably, the sample with x = 0.15 exhibited excellent absorption characteristics from 8.2 GHz to 13.1 GHz, with a reflection loss (RL) of −32 dB. These findings suggest that an appropriate concentration of Mg doping can enhance the impedance matching of the materials, thereby improving their microwave absorption performance.

Graphical Abstract

Adding Mg in LiZnMn ferries can improves the initial permeability (μi) and microwave absorption performance.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
掺Mg的LiZnMn铁氧体的微波吸收和磁性能
铁氧体因其广泛的应用而受到广泛的研究。本文采用溶胶-凝胶自燃烧法合成了Li0.4-0.5xZn0.2Mn0.1Mgx-0.1Fe2.4-0.5xO4 (x = 0.1, 0.15, 0.2, 0.25, 0.3)。x射线衍射和红外光谱证实了立方尖晶石结构的形成。晶格常数随x值的增大而增大,而密度、晶粒尺寸和微应变则相应减小。Mg掺杂后,饱和磁化强度和矫顽力略有降低,初始磁导率略有提高。居里温度从x = 0.1时的433℃下降到x = 0.3时的395℃。Mg的掺杂也使吸波材料的最佳匹配厚度减小到3 mm。Mg-LiZnMn吸收体的重量比LiZnMn轻。值得注意的是,x = 0.15的样品在8.2 GHz至13.1 GHz范围内具有良好的吸收特性,反射损耗(RL)为−32 dB。这些结果表明,适当浓度的Mg掺杂可以增强材料的阻抗匹配,从而提高材料的微波吸收性能。摘要在lizznmn轮渡中加入Mg可以提高初始磁导率(μi)和微波吸收性能。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Journal of Sol-Gel Science and Technology
Journal of Sol-Gel Science and Technology 工程技术-材料科学:硅酸盐
CiteScore
4.70
自引率
4.00%
发文量
280
审稿时长
2.1 months
期刊介绍: The primary objective of the Journal of Sol-Gel Science and Technology (JSST), the official journal of the International Sol-Gel Society, is to provide an international forum for the dissemination of scientific, technological, and general knowledge about materials processed by chemical nanotechnologies known as the "sol-gel" process. The materials of interest include gels, gel-derived glasses, ceramics in form of nano- and micro-powders, bulk, fibres, thin films and coatings as well as more recent materials such as hybrid organic-inorganic materials and composites. Such materials exhibit a wide range of optical, electronic, magnetic, chemical, environmental, and biomedical properties and functionalities. Methods for producing sol-gel-derived materials and the industrial uses of these materials are also of great interest.
期刊最新文献
Density functional theory studies on the reaction mechanism of alumina synthesis with a new sol-gel routine The effect on zirconyl type salt on the phase composition, particle size and sinterability of zirconia based powders obtained via reversed co-precipitation Solvent engineering of SnO2 ETL for enhanced performance of carbon-based CsPbIBr2 PSCs Development of two novel supramolecular metallogels of Mn(II) and Zn(II)-ion derived from L-(+) tartaric acid for fabricating light responsive junction type semiconducting diodes with non-ohmic conduction mechanism Exploring the ZnO/CuO/g-C3N4 nanocomposite for superior energy storage capabilities
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1