Perspectives on Coupling Nonthermal Plasma Generated in Gas–Liquid Water Environments with Microbes

IF 2.6 3区 物理与天体物理 Q3 ENGINEERING, CHEMICAL Plasma Chemistry and Plasma Processing Pub Date : 2024-11-14 DOI:10.1007/s11090-024-10530-3
Bruce R. Locke, Erin Petkus, Cesar Rodriguez
{"title":"Perspectives on Coupling Nonthermal Plasma Generated in Gas–Liquid Water Environments with Microbes","authors":"Bruce R. Locke,&nbsp;Erin Petkus,&nbsp;Cesar Rodriguez","doi":"10.1007/s11090-024-10530-3","DOIUrl":null,"url":null,"abstract":"<div><p>The large natural metabolic diversity of microorganisms has allowed them to survive in very harsh conditions of high temperature, high ionizing radiation, and high concentrations of reactive chemical species. The environment of low temperature plasma generated with liquids is comparable to many natural conditions (high temperature, highly oxidative, presence of various types of radiation) and thus suggests microbes can evolve or be engineered to not only survive but thrive in such extreme conditions. The evidence from the literature and previous work suggests that the in-situ coupling of engineered and evolved strains of bacteria with low temperature plasma generated with liquid water may provide enhanced functionality with respect to organic chemical reactions.</p></div>","PeriodicalId":734,"journal":{"name":"Plasma Chemistry and Plasma Processing","volume":"45 1","pages":"463 - 483"},"PeriodicalIF":2.6000,"publicationDate":"2024-11-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Plasma Chemistry and Plasma Processing","FirstCategoryId":"5","ListUrlMain":"https://link.springer.com/article/10.1007/s11090-024-10530-3","RegionNum":3,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENGINEERING, CHEMICAL","Score":null,"Total":0}
引用次数: 0

Abstract

The large natural metabolic diversity of microorganisms has allowed them to survive in very harsh conditions of high temperature, high ionizing radiation, and high concentrations of reactive chemical species. The environment of low temperature plasma generated with liquids is comparable to many natural conditions (high temperature, highly oxidative, presence of various types of radiation) and thus suggests microbes can evolve or be engineered to not only survive but thrive in such extreme conditions. The evidence from the literature and previous work suggests that the in-situ coupling of engineered and evolved strains of bacteria with low temperature plasma generated with liquid water may provide enhanced functionality with respect to organic chemical reactions.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
气体-液态水环境中产生的非热等离子体与微生物耦合研究进展
微生物巨大的天然代谢多样性使它们能够在高温、高电离辐射和高浓度活性化学物质等非常恶劣的条件下生存。用液体产生的低温等离子体的环境与许多自然条件(高温、高度氧化、存在各种类型的辐射)相当,因此表明微生物可以进化或被改造,不仅能在这种极端条件下生存,而且能茁壮成长。来自文献和先前工作的证据表明,工程和进化菌株与液态水产生的低温等离子体的原位耦合可能会增强有机化学反应的功能。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Plasma Chemistry and Plasma Processing
Plasma Chemistry and Plasma Processing 工程技术-工程:化工
CiteScore
5.90
自引率
8.30%
发文量
73
审稿时长
6-12 weeks
期刊介绍: Publishing original papers on fundamental and applied research in plasma chemistry and plasma processing, the scope of this journal includes processing plasmas ranging from non-thermal plasmas to thermal plasmas, and fundamental plasma studies as well as studies of specific plasma applications. Such applications include but are not limited to plasma catalysis, environmental processing including treatment of liquids and gases, biological applications of plasmas including plasma medicine and agriculture, surface modification and deposition, powder and nanostructure synthesis, energy applications including plasma combustion and reforming, resource recovery, coupling of plasmas and electrochemistry, and plasma etching. Studies of chemical kinetics in plasmas, and the interactions of plasmas with surfaces are also solicited. It is essential that submissions include substantial consideration of the role of the plasma, for example, the relevant plasma chemistry, plasma physics or plasma–surface interactions; manuscripts that consider solely the properties of materials or substances processed using a plasma are not within the journal’s scope.
期刊最新文献
Review of Non-Thermal Plasma Technology and Its Potential Impact on Food Crop Seed Types in Plasma Agriculture Plasma and Flow Simulation of the Ion Wind in a Surface Barrier Discharge Used for Gas Conversion Benchmarked by Schlieren Imaging Separation of Plasma Species for Investigating the Impact of Hydrogen Plasmas on the Work Function of Caesiated Surfaces Transient Spark Plasma-Treated L-Cysteine Reduces CCl4-Induced Hepatotoxicity in Rats Perspectives on Coupling Nonthermal Plasma Generated in Gas–Liquid Water Environments with Microbes
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1