Joo Young Park, Ki Ho Baek, Hyungyu Lee, Jong-Seok Song, Seungil Park, Sung Hoon Jee, Sunghoon Jung, Juyeon Choi, Seunghoon Lee, Sanghoo Park
{"title":"Extension of Tomato Shelf Life via Nitric Oxide Treatment Using Air Plasma","authors":"Joo Young Park, Ki Ho Baek, Hyungyu Lee, Jong-Seok Song, Seungil Park, Sung Hoon Jee, Sunghoon Jung, Juyeon Choi, Seunghoon Lee, Sanghoo Park","doi":"10.1007/s11090-024-10520-5","DOIUrl":null,"url":null,"abstract":"<div><p>Nitric oxide (NO) generation-enhanced atmospheric-pressure plasma technology has been investigated as a nonthermal intervention technology for prolonging the ripening period of tomatoes. UV-irradiated dielectric barrier discharge plasma reaches the NO-enhanced mode earlier, and NO is rapidly involved in the inhibition of tomato respiration. With as little as 26 W of power in total, the NO-processing of tomatoes using plasma technology helps control the postripening of tomatoes. The NO-enrichment mechanism was analyzed through numerical calculations, which revealed that the photolysis of ozone (O<sub>3</sub>) and nitrous acid (HONO) occurred during UV irradiation. The measured amount of CO<sub>2</sub> emitted from plasma-treated tomatoes was ~ 300 ppm lower than that emitted from nontreated tomatoes, indicating that metabolism and respiration were inhibited. In addition, the NO-enhanced plasma treatment of tomatoes is considered to be more effective because the so-treated tomatoes emitted 100 ppm less CO<sub>2</sub> than the plasma-treated tomatoes. The delay of respiration through plasma treatment can help prevent color changes or decreases in the firmness of tomatoes.</p></div>","PeriodicalId":734,"journal":{"name":"Plasma Chemistry and Plasma Processing","volume":"45 1","pages":"297 - 311"},"PeriodicalIF":2.6000,"publicationDate":"2024-10-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Plasma Chemistry and Plasma Processing","FirstCategoryId":"5","ListUrlMain":"https://link.springer.com/article/10.1007/s11090-024-10520-5","RegionNum":3,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENGINEERING, CHEMICAL","Score":null,"Total":0}
引用次数: 0
Abstract
Nitric oxide (NO) generation-enhanced atmospheric-pressure plasma technology has been investigated as a nonthermal intervention technology for prolonging the ripening period of tomatoes. UV-irradiated dielectric barrier discharge plasma reaches the NO-enhanced mode earlier, and NO is rapidly involved in the inhibition of tomato respiration. With as little as 26 W of power in total, the NO-processing of tomatoes using plasma technology helps control the postripening of tomatoes. The NO-enrichment mechanism was analyzed through numerical calculations, which revealed that the photolysis of ozone (O3) and nitrous acid (HONO) occurred during UV irradiation. The measured amount of CO2 emitted from plasma-treated tomatoes was ~ 300 ppm lower than that emitted from nontreated tomatoes, indicating that metabolism and respiration were inhibited. In addition, the NO-enhanced plasma treatment of tomatoes is considered to be more effective because the so-treated tomatoes emitted 100 ppm less CO2 than the plasma-treated tomatoes. The delay of respiration through plasma treatment can help prevent color changes or decreases in the firmness of tomatoes.
期刊介绍:
Publishing original papers on fundamental and applied research in plasma chemistry and plasma processing, the scope of this journal includes processing plasmas ranging from non-thermal plasmas to thermal plasmas, and fundamental plasma studies as well as studies of specific plasma applications. Such applications include but are not limited to plasma catalysis, environmental processing including treatment of liquids and gases, biological applications of plasmas including plasma medicine and agriculture, surface modification and deposition, powder and nanostructure synthesis, energy applications including plasma combustion and reforming, resource recovery, coupling of plasmas and electrochemistry, and plasma etching. Studies of chemical kinetics in plasmas, and the interactions of plasmas with surfaces are also solicited. It is essential that submissions include substantial consideration of the role of the plasma, for example, the relevant plasma chemistry, plasma physics or plasma–surface interactions; manuscripts that consider solely the properties of materials or substances processed using a plasma are not within the journal’s scope.