Controlling Microparticle Aspect Ratio via Photolithography for Injectable Granular Hydrogel Formation and Cell Delivery.

IF 5.4 2区 医学 Q2 MATERIALS SCIENCE, BIOMATERIALS ACS Biomaterials Science & Engineering Pub Date : 2025-02-10 Epub Date: 2025-01-09 DOI:10.1021/acsbiomaterials.4c02102
Dean E Stornello, Jun Kim, Zhiyuan Chen, Kyle Heaton, Taimoor H Qazi
{"title":"Controlling Microparticle Aspect Ratio via Photolithography for Injectable Granular Hydrogel Formation and Cell Delivery.","authors":"Dean E Stornello, Jun Kim, Zhiyuan Chen, Kyle Heaton, Taimoor H Qazi","doi":"10.1021/acsbiomaterials.4c02102","DOIUrl":null,"url":null,"abstract":"<p><p>Granular hydrogels are injectable and inherently porous biomaterials assembled through the packing of microparticles. These particles typically have a symmetric and spherical shape. However, recent studies have shown that asymmetric particles with high aspect ratios, such as fibers and rods, can significantly improve the mechanics, structure, and cell-guidance ability of granular hydrogels. Despite this, it remains unknown how controlled changes in the particle aspect ratio influence the injectability, porosity, and cell-instructive capabilities of granular hydrogels. Part of the challenge lies in obtaining microparticles with precisely tailored dimensions using fabrication methods such as flow-focusing microfluidics or extrusion fragmentation. In this work, we leveraged facile photolithography and photocurable hyaluronic acid to fabricate rod-shaped microparticles with widths and heights of 130 μm and lengths that varied from 260 to 1300 μm to obtain aspect ratios (ARs) of 2, 4, 6, 8, and 10. All AR microparticles formed porous and injectable granular hydrogels after centrifugation jamming. Interestingly, the longest microparticles neither clogged the needle nor fractured after extrusion from a syringe. This was attributed to a relatively low elastic modulus that permitted microparticle pliability and reversible deformation under shear. Cells (NIH/3T3 fibroblasts) mixed with the jammed microparticles and injected into molds remained viable, adhered to the particles' surface, and showed a significant and rapid rate of proliferation over a period of 7 days compared to bulk hydrogels. The proliferation rate and morphology of the cells were significantly influenced by the particle AR, with higher cell numbers observed with intermediate ARs, likely attributable to the surface area available for cell adhesion. These findings showcase the utility of injectable granular hydrogels made with high-aspect-ratio microparticles for biomedical applications.</p>","PeriodicalId":8,"journal":{"name":"ACS Biomaterials Science & Engineering","volume":" ","pages":"1242-1252"},"PeriodicalIF":5.4000,"publicationDate":"2025-02-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Biomaterials Science & Engineering","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1021/acsbiomaterials.4c02102","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/1/9 0:00:00","PubModel":"Epub","JCR":"Q2","JCRName":"MATERIALS SCIENCE, BIOMATERIALS","Score":null,"Total":0}
引用次数: 0

Abstract

Granular hydrogels are injectable and inherently porous biomaterials assembled through the packing of microparticles. These particles typically have a symmetric and spherical shape. However, recent studies have shown that asymmetric particles with high aspect ratios, such as fibers and rods, can significantly improve the mechanics, structure, and cell-guidance ability of granular hydrogels. Despite this, it remains unknown how controlled changes in the particle aspect ratio influence the injectability, porosity, and cell-instructive capabilities of granular hydrogels. Part of the challenge lies in obtaining microparticles with precisely tailored dimensions using fabrication methods such as flow-focusing microfluidics or extrusion fragmentation. In this work, we leveraged facile photolithography and photocurable hyaluronic acid to fabricate rod-shaped microparticles with widths and heights of 130 μm and lengths that varied from 260 to 1300 μm to obtain aspect ratios (ARs) of 2, 4, 6, 8, and 10. All AR microparticles formed porous and injectable granular hydrogels after centrifugation jamming. Interestingly, the longest microparticles neither clogged the needle nor fractured after extrusion from a syringe. This was attributed to a relatively low elastic modulus that permitted microparticle pliability and reversible deformation under shear. Cells (NIH/3T3 fibroblasts) mixed with the jammed microparticles and injected into molds remained viable, adhered to the particles' surface, and showed a significant and rapid rate of proliferation over a period of 7 days compared to bulk hydrogels. The proliferation rate and morphology of the cells were significantly influenced by the particle AR, with higher cell numbers observed with intermediate ARs, likely attributable to the surface area available for cell adhesion. These findings showcase the utility of injectable granular hydrogels made with high-aspect-ratio microparticles for biomedical applications.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
通过光刻技术控制可注射颗粒水凝胶形成和细胞传递的微粒宽高比。
颗粒水凝胶是一种可注射的、固有的多孔生物材料,通过微粒的包装组装而成。这些粒子通常具有对称的球形。然而,最近的研究表明,高长径比的非对称颗粒,如纤维和棒,可以显著改善颗粒水凝胶的力学、结构和细胞引导能力。尽管如此,颗粒长径比的可控变化如何影响颗粒水凝胶的可注射性、孔隙度和细胞引导能力仍是未知的。部分挑战在于使用流动聚焦微流体或挤压破碎等制造方法获得精确定制尺寸的微粒。在这项工作中,我们利用易光刻和光固化透明质酸来制造条状微颗粒,其宽度和高度为130 μm,长度从260到1300 μm不等,从而获得宽高比(ARs)为2,4,6,8和10。所有AR微粒经离心干扰后形成多孔可注射的颗粒状水凝胶。有趣的是,最长的微粒既不会堵塞针头,也不会在从注射器中挤出后断裂。这归因于相对较低的弹性模量,允许微粒柔韧性和剪切下的可逆变形。细胞(NIH/3T3成纤维细胞)与堵塞的微颗粒混合并注射到霉菌中,保持活力,粘附在颗粒表面,与散装水凝胶相比,在7天的时间内表现出显著而快速的增殖速度。颗粒AR对细胞的增殖速率和形态有显著影响,中间AR观察到的细胞数量较多,可能是由于可用于细胞粘附的表面积。这些发现展示了用高纵横比微粒制成的可注射颗粒水凝胶在生物医学应用中的实用性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
ACS Biomaterials Science & Engineering
ACS Biomaterials Science & Engineering Materials Science-Biomaterials
CiteScore
10.30
自引率
3.40%
发文量
413
期刊介绍: ACS Biomaterials Science & Engineering is the leading journal in the field of biomaterials, serving as an international forum for publishing cutting-edge research and innovative ideas on a broad range of topics: Applications and Health – implantable tissues and devices, prosthesis, health risks, toxicology Bio-interactions and Bio-compatibility – material-biology interactions, chemical/morphological/structural communication, mechanobiology, signaling and biological responses, immuno-engineering, calcification, coatings, corrosion and degradation of biomaterials and devices, biophysical regulation of cell functions Characterization, Synthesis, and Modification – new biomaterials, bioinspired and biomimetic approaches to biomaterials, exploiting structural hierarchy and architectural control, combinatorial strategies for biomaterials discovery, genetic biomaterials design, synthetic biology, new composite systems, bionics, polymer synthesis Controlled Release and Delivery Systems – biomaterial-based drug and gene delivery, bio-responsive delivery of regulatory molecules, pharmaceutical engineering Healthcare Advances – clinical translation, regulatory issues, patient safety, emerging trends Imaging and Diagnostics – imaging agents and probes, theranostics, biosensors, monitoring Manufacturing and Technology – 3D printing, inks, organ-on-a-chip, bioreactor/perfusion systems, microdevices, BioMEMS, optics and electronics interfaces with biomaterials, systems integration Modeling and Informatics Tools – scaling methods to guide biomaterial design, predictive algorithms for structure-function, biomechanics, integrating bioinformatics with biomaterials discovery, metabolomics in the context of biomaterials Tissue Engineering and Regenerative Medicine – basic and applied studies, cell therapies, scaffolds, vascularization, bioartificial organs, transplantation and functionality, cellular agriculture
期刊最新文献
Issue Publication Information Issue Editorial Masthead Guiding Oligodendrocyte Progenitor Cell Maturation Using Electrospun Fiber Cues in a 3D Hyaluronic Acid Hydrogel Culture System. Controlling Microparticle Aspect Ratio via Photolithography for Injectable Granular Hydrogel Formation and Cell Delivery. Freeze-Cast Composites of Alginate/Pyrophosphate-Stabilized Amorphous Calcium Carbonate: From the Nanoscale Structuration to the Macroscopic Properties.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1