Quinlin Hanson, Xin Hu, Sourav Pal, Katlin Recabo, Lin Ye, Ivy Poon, John-Paul Denson, Simon Messing, Min Shen, Kelli M Wilson, Alexey Zakharov, Dominic Esposito, Natalia J Martinez
{"title":"A High-Throughput Screening Pipeline to Identify Methyltransferase and Exonuclease Inhibitors of SARS-CoV-2 NSP14.","authors":"Quinlin Hanson, Xin Hu, Sourav Pal, Katlin Recabo, Lin Ye, Ivy Poon, John-Paul Denson, Simon Messing, Min Shen, Kelli M Wilson, Alexey Zakharov, Dominic Esposito, Natalia J Martinez","doi":"10.1021/acs.biochem.4c00490","DOIUrl":null,"url":null,"abstract":"<p><p>SARS-CoV-2 infections led to a worldwide pandemic in 2020. As of 2024, therapeutics against SARS-CoV-2 have continued to be desirable. NSP14 is a dual-function methyltransferase (MTase) and exonuclease (ExoN) with key roles in SARS-CoV-2 genome propagation and host immune system evasion. In this work, we developed high-throughput screening (HTS) assays for NSP14 MTase and ExoN activities. We screened both activities against a collection of 40,664 compounds. A total of 1677 initial hit compounds were identified, cherrypicked, counterscreened for assay interference, and screened for off-target selectivity. We identified 396 and 174 high-quality hits against the MTase and ExoN activities, respectively. Along with inhibitors for individual activities, we identified dual-activity inhibitors, including a novel inhibitor that is not competitive with any substrate and interacts with a putative allosteric binding site. This study represents the largest published screen of SARS-CoV-2 NSP14 MTase and ExoN activities to date and culminates in a pipeline for the NSP14 drug discovery.</p>","PeriodicalId":28,"journal":{"name":"Biochemistry Biochemistry","volume":" ","pages":"419-431"},"PeriodicalIF":2.9000,"publicationDate":"2025-01-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Biochemistry Biochemistry","FirstCategoryId":"1","ListUrlMain":"https://doi.org/10.1021/acs.biochem.4c00490","RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/1/9 0:00:00","PubModel":"Epub","JCR":"Q3","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
SARS-CoV-2 infections led to a worldwide pandemic in 2020. As of 2024, therapeutics against SARS-CoV-2 have continued to be desirable. NSP14 is a dual-function methyltransferase (MTase) and exonuclease (ExoN) with key roles in SARS-CoV-2 genome propagation and host immune system evasion. In this work, we developed high-throughput screening (HTS) assays for NSP14 MTase and ExoN activities. We screened both activities against a collection of 40,664 compounds. A total of 1677 initial hit compounds were identified, cherrypicked, counterscreened for assay interference, and screened for off-target selectivity. We identified 396 and 174 high-quality hits against the MTase and ExoN activities, respectively. Along with inhibitors for individual activities, we identified dual-activity inhibitors, including a novel inhibitor that is not competitive with any substrate and interacts with a putative allosteric binding site. This study represents the largest published screen of SARS-CoV-2 NSP14 MTase and ExoN activities to date and culminates in a pipeline for the NSP14 drug discovery.
期刊介绍:
Biochemistry provides an international forum for publishing exceptional, rigorous, high-impact research across all of biological chemistry. This broad scope includes studies on the chemical, physical, mechanistic, and/or structural basis of biological or cell function, and encompasses the fields of chemical biology, synthetic biology, disease biology, cell biology, nucleic acid biology, neuroscience, structural biology, and biophysics. In addition to traditional Research Articles, Biochemistry also publishes Communications, Viewpoints, and Perspectives, as well as From the Bench articles that report new methods of particular interest to the biological chemistry community.